Commit 0d392409 authored by Sergey Bozhko's avatar Sergey Bozhko

EDF instantiations

Add instantiations of aRTA for
(1) fully preemptive,
(2) fully non-preemptive,
(3) limited preemptions,
(4) and floating non-preemptive regions EDF models
parent 11dba7fb
From rt.util Require Import all.
From rt.restructuring.behavior Require Import all.
From rt.restructuring.analysis.basic_facts Require Import all.
From rt.restructuring.model Require Import job task workload processor.ideal readiness.basic.
From rt.restructuring.model.arrival Require Import arrival_curves.
From rt.restructuring.model Require Import preemption.floating.
From rt.restructuring.model.schedule Require Import
work_conserving priority_based.priorities priority_based.edf priority_based.preemption_aware.
From rt.restructuring.analysis.arrival Require Import workload_bound rbf.
From rt.restructuring.analysis.edf.rta Require Import nonpr_reg.response_time_bound.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
(** * RTA for Model with Floating Non-Preemptive Regions *)
(** In this module we prove the RTA theorem for floating non-preemptive regions EDF model. *)
Section RTAforModelWithFloatingNonpreemptiveRegionsWithArrivalCurves.
(** Consider any type of tasks ... *)
Context {Task : TaskType}.
Context `{TaskCost Task}.
Context `{TaskDeadline Task}.
(** ... and any type of jobs associated with these tasks. *)
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
(** For clarity, let's denote the relative deadline of a task as D. *)
Let D tsk := task_deadline tsk.
(** Consider the EDF policy that indicates a higher-or-equal priority relation. *)
Let EDF := EDF Task Job.
(** Consider any arrival sequence with consistent, non-duplicate arrivals. *)
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
(** Assume we have the model with floating nonpreemptive regions.
I.e., for each task only the length of the maximal nonpreemptive
segment is known _and_ each job level is divided into a number
of nonpreemptive segments by inserting preemption points. *)
Context `{JobPreemptionPoints Job}
`{TaskMaxNonpreemptiveSegment Task}.
Hypothesis H_valid_task_model_with_floating_nonpreemptive_regions:
valid_model_with_floating_nonpreemptive_regions arr_seq.
(** Consider an arbitrary task set ts, ... *)
Variable ts : list Task.
(** ... assume that all jobs come from this task set, ... *)
Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.
(** ... and the cost of a job cannot be larger than the task cost. *)
Hypothesis H_job_cost_le_task_cost:
cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq.
(** Let max_arrivals be a family of valid arrival curves, i.e., for
any task tsk in ts [max_arrival tsk] is (1) an arrival bound of
tsk, and (2) it is a monotonic function that equals 0 for the
empty interval delta = 0. *)
Context `{MaxArrivals Task}.
Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.
(** Let tsk be any task in ts that is to be analyzed. *)
Variable tsk : Task.
Hypothesis H_tsk_in_ts : tsk \in ts.
(** Next, consider any ideal uniprocessor schedule with limited
preemptions of this arrival sequence ... *)
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_jobs_come_from_arrival_sequence:
jobs_come_from_arrival_sequence sched arr_seq.
Hypothesis H_schedule_with_limited_preemptions:
valid_schedule_with_limited_preemptions arr_seq sched.
(** ... where jobs do not execute before their arrival or after completion. *)
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.
(** Assume we have sequential tasks, i.e, jobs from the
same task execute in the order of their arrival. *)
Hypothesis H_sequential_tasks : sequential_tasks sched.
(** Next, we assume that the schedule is a work-conserving schedule... *)
Hypothesis H_work_conserving : work_conserving arr_seq sched.
(** ... and the schedule respects the policy defined by the
job_preemptable function (i.e., jobs have bounded nonpreemptive
segments). *)
Hypothesis H_respects_policy : respects_policy_at_preemption_point arr_seq sched.
(** Let's define some local names for clarity. *)
Let response_time_bounded_by :=
task_response_time_bound arr_seq sched.
Let task_rbf_changes_at A := task_rbf_changes_at tsk A.
Let bound_on_total_hep_workload_changes_at :=
bound_on_total_hep_workload_changes_at ts tsk.
(** We introduce the abbreviation "rbf" for the task request bound function,
which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T. *)
Let rbf := task_request_bound_function.
(** Next, we introduce task_rbf as an abbreviation
for the task request bound function of task tsk. *)
Let task_rbf := rbf tsk.
(** Using the sum of individual request bound functions, we define the request bound
function of all tasks (total request bound function). *)
Let total_rbf := total_request_bound_function ts.
(** We define a bound for the priority inversion caused by jobs with lower priority. *)
Definition blocking_bound :=
\max_(tsk_other <- ts | (tsk_other != tsk) && (D tsk_other > D tsk))
(task_max_nonpreemptive_segment tsk_other - ε).
(** Next, we define an upper bound on interfering workload received from jobs
of other tasks with higher-than-or-equal priority. *)
Let bound_on_total_hep_workload A Δ :=
\sum_(tsk_o <- ts | tsk_o != tsk)
rbf tsk_o (minn ((A + ε) + D tsk - D tsk_o) Δ).
(** Let L be any positive fixed point of the busy interval recurrence. *)
Variable L : duration.
Hypothesis H_L_positive : L > 0.
Hypothesis H_fixed_point : L = total_rbf L.
(** To reduce the time complexity of the analysis, recall the notion of search space. *)
Let is_in_search_space (A : duration) :=
(A < L) && (task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A).
(** Consider any value R, and assume that for any given arrival offset A in the search space,
there is a solution of the response-time bound recurrence which is bounded by R. *)
Variable R : duration.
Hypothesis H_R_is_maximum:
forall (A : duration),
is_in_search_space A ->
exists (F : duration),
A + F = blocking_bound + task_rbf (A + ε) + bound_on_total_hep_workload A (A + F) /\
F <= R.
(** Now, we can leverage the results for the abstract model with
bounded nonpreemptive segments to establish a response-time
bound for the more concrete model with floating nonpreemptive
regions. *)
Theorem uniprocessor_response_time_bound_edf_with_floating_nonpreemptive_regions:
response_time_bounded_by tsk R.
Proof.
move: (H_valid_task_model_with_floating_nonpreemptive_regions) => [LIMJ JMLETM].
move: (LIMJ) => [BEG [END _]].
eapply uniprocessor_response_time_bound_edf_with_bounded_nonpreemptive_segments with (L0 := L).
all: eauto 2 with basic_facts.
{ rewrite subnn.
intros A SP.
apply H_R_is_maximum in SP.
move: SP => [F [EQ LE]].
exists F.
by rewrite subn0 addn0; split.
}
Qed.
End RTAforModelWithFloatingNonpreemptiveRegionsWithArrivalCurves.
\ No newline at end of file
From rt.util Require Import all.
From rt.restructuring.behavior Require Import all.
From rt.restructuring.analysis.basic_facts Require Import all.
From rt.restructuring.model Require Import job task workload processor.ideal readiness.basic.
From rt.restructuring.model.arrival Require Import arrival_curves.
From rt.restructuring.model Require Import preemption.limited.
From rt.restructuring.model.schedule Require Import
work_conserving priority_based.priorities priority_based.edf priority_based.preemption_aware.
From rt.restructuring.analysis.arrival Require Import workload_bound rbf.
From rt.restructuring.analysis.edf.rta Require Import nonpr_reg.response_time_bound.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
(** * RTA for EDF-schedulers with Fixed Premption Points *)
(** In this module we prove the RTA theorem for EDF-schedulers with fixed preemption points. *)
Section RTAforFixedPreemptionPointsModelwithArrivalCurves.
(** Consider any type of tasks ... *)
Context {Task : TaskType}.
Context `{TaskCost Task}.
Context `{TaskDeadline Task}.
(** ... and any type of jobs associated with these tasks. *)
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
(** For clarity, let's denote the relative deadline of a task as D. *)
Let D tsk := task_deadline tsk.
(** Consider the EDF policy that indicates a higher-or-equal priority relation. *)
Let EDF := EDF Task Job.
(** Consider any arrival sequence with consistent, non-duplicate arrivals. *)
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
(** Consider an arbitrary task set ts, ... *)
Variable ts : list Task.
(** ... assume that all jobs come from this task set, ... *)
Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.
(** ... and the cost of a job cannot be larger than the task cost. *)
Hypothesis H_job_cost_le_task_cost:
cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq.
(** Next, we assume we have the model with fixed preemption points.
I.e., each task is divided into a number of nonpreemptive segments
by inserting staticaly predefined preemption points. *)
Context `{JobPreemptionPoints Job}.
Context `{TaskPreemptionPoints Task}.
Hypothesis H_valid_model_with_fixed_preemption_points:
valid_fixed_preemption_points_model arr_seq ts.
(** Let max_arrivals be a family of valid arrival curves, i.e., for
any task tsk in ts [max_arrival tsk] is (1) an arrival bound of
tsk, and (2) it is a monotonic function that equals 0 for the
empty interval delta = 0. *)
Context `{MaxArrivals Task}.
Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.
(** Let tsk be any task in ts that is to be analyzed. *)
Variable tsk : Task.
Hypothesis H_tsk_in_ts : tsk \in ts.
(** Next, consider any ideal uniprocessor schedule with limited
preemptionsof this arrival sequence ... *)
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_jobs_come_from_arrival_sequence:
jobs_come_from_arrival_sequence sched arr_seq.
Hypothesis H_schedule_with_limited_preemptions:
valid_schedule_with_limited_preemptions arr_seq sched.
(** ... where jobs do not execute before their arrival or after completion. *)
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.
(** Assume we have sequential tasks, i.e, jobs from the
same task execute in the order of their arrival. *)
Hypothesis H_sequential_tasks : sequential_tasks sched.
(** Next, we assume that the schedule is a work-conserving schedule... *)
Hypothesis H_work_conserving : work_conserving arr_seq sched.
(** ... and the schedule respects the policy defined by the
job_preemptable function (i.e., jobs have bounded nonpreemptive
segments). *)
Hypothesis H_respects_policy : respects_policy_at_preemption_point arr_seq sched.
(** Let's define some local names for clarity. *)
Let response_time_bounded_by := task_response_time_bound arr_seq sched.
Let task_rbf_changes_at A := task_rbf_changes_at tsk A.
Let bound_on_total_hep_workload_changes_at :=
bound_on_total_hep_workload_changes_at ts tsk.
(** We introduce the abbreviation "rbf" for the task request bound function,
which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T. *)
Let rbf := task_request_bound_function.
(** Next, we introduce task_rbf as an abbreviation
for the task request bound function of task tsk. *)
Let task_rbf := rbf tsk.
(** Using the sum of individual request bound functions, we define the request bound
function of all tasks (total request bound function). *)
Let total_rbf := total_request_bound_function ts.
(** We define a bound for the priority inversion caused by jobs with lower priority. *)
Let blocking_bound :=
\max_(tsk_other <- ts | (tsk_other != tsk) && (D tsk_other > D tsk))
(task_max_nonpreemptive_segment tsk_other - ε).
(** Next, we define an upper bound on interfering workload received from jobs
of other tasks with higher-than-or-equal priority. *)
Let bound_on_total_hep_workload A Δ :=
\sum_(tsk_o <- ts | tsk_o != tsk)
rbf tsk_o (minn ((A + ε) + D tsk - D tsk_o) Δ).
(** Let L be any positive fixed point of the busy interval recurrence. *)
Variable L : duration.
Hypothesis H_L_positive : L > 0.
Hypothesis H_fixed_point : L = total_rbf L.
(** To reduce the time complexity of the analysis, recall the notion of search space. *)
Let is_in_search_space A :=
(A < L) && (task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A).
(** Consider any value R, and assume that for any given arrival offset A in the search space,
there is a solution of the response-time bound recurrence which is bounded by R. *)
Variable R : duration.
Hypothesis H_R_is_maximum:
forall (A : duration),
is_in_search_space A ->
exists (F : duration),
A + F = blocking_bound
+ (task_rbf (A + ε) - (task_last_nonpr_segment tsk - ε))
+ bound_on_total_hep_workload A (A + F) /\
F + (task_last_nonpr_segment tsk - ε) <= R.
(** Now, we can leverage the results for the abstract model with bounded nonpreemptive segments
to establish a response-time bound for the more concrete model of fixed preemption points. *)
Theorem uniprocessor_response_time_bound_edf_with_fixed_preemption_points:
response_time_bounded_by tsk R.
Proof.
move: (H_valid_model_with_fixed_preemption_points) => [MLP [BEG [END [INCR [HYP1 [HYP2 HYP3]]]]]].
move: (MLP) => [BEGj [ENDj _]].
case: (posnP (task_cost tsk)) => [ZERO|POSt].
{ intros j ARR TSK.
move: (H_job_cost_le_task_cost _ ARR) => POSt.
move: POSt; rewrite /job_cost_le_task_cost TSK ZERO leqn0; move => /eqP Z.
by rewrite /job_response_time_bound /completed_by Z.
}
eapply uniprocessor_response_time_bound_edf_with_bounded_nonpreemptive_segments with (L0 := L).
all: eauto 2 with basic_facts.
{ rewrite subKn; first by done.
rewrite /task_last_nonpr_segment -(leq_add2r 1) subn1 !addn1 prednK; last first.
{ rewrite /last0 -nth_last.
apply HYP3; try by done.
rewrite -(ltn_add2r 1) !addn1 prednK //.
move: (number_of_preemption_points_in_task_at_least_two
_ _ H_valid_model_with_fixed_preemption_points _ H_tsk_in_ts POSt) => Fact2.
move: (Fact2) => Fact3.
by rewrite size_of_seq_of_distances // addn1 ltnS // in Fact2.
}
{ apply leq_trans with (task_max_nonpreemptive_segment tsk).
- by apply last_of_seq_le_max_of_seq.
- rewrite -END; last by done.
apply ltnW; rewrite ltnS; try done.
by apply max_distance_in_seq_le_last_element_of_seq; eauto 2.
}
}
Qed.
End RTAforFixedPreemptionPointsModelwithArrivalCurves.
\ No newline at end of file
From rt.util Require Import all.
From rt.restructuring.behavior Require Import all.
From rt.restructuring.analysis.basic_facts Require Import all.
From rt.restructuring.model Require Import job task workload processor.ideal readiness.basic.
From rt.restructuring.model.arrival Require Import arrival_curves.
From rt.restructuring.model.schedule Require Import
work_conserving priority_based.priorities priority_based.edf priority_based.preemption_aware.
From rt.restructuring.analysis.arrival Require Import workload_bound rbf.
From rt.restructuring.analysis.edf.rta Require Import nonpr_reg.response_time_bound.
(** Assume we have a fully non-preemptive model. *)
From rt.restructuring.model Require Import preemption.nonpreemptive.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
(** * RTA for Fully Non-Preemptive FP Model *)
(** In this module we prove the RTA theorem for the fully non-preemptive EDF model. *)
Section RTAforFullyNonPreemptiveEDFModelwithArrivalCurves.
(** Consider any type of tasks ... *)
Context {Task : TaskType}.
Context `{TaskCost Task}.
Context `{TaskDeadline Task}.
(** ... and any type of jobs associated with these tasks. *)
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
(** For clarity, let's denote the relative deadline of a task as D. *)
Let D tsk := task_deadline tsk.
(** Consider the EDF policy that indicates a higher-or-equal priority relation. *)
Let EDF := EDF Task Job.
(** Consider any arrival sequence with consistent, non-duplicate arrivals. *)
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
(** Consider an arbitrary task set ts, ... *)
Variable ts : list Task.
(** ... assume that all jobs come from this task set, ... *)
Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.
(** ... and the cost of a job cannot be larger than the task cost. *)
Hypothesis H_job_cost_le_task_cost:
cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq.
(** Let max_arrivals be a family of valid arrival curves, i.e., for
any task tsk in ts [max_arrival tsk] is (1) an arrival bound of
tsk, and (2) it is a monotonic function that equals 0 for the
empty interval delta = 0. *)
Context `{MaxArrivals Task}.
Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.
(** Let tsk be any task in ts that is to be analyzed. *)
Variable tsk : Task.
Hypothesis H_tsk_in_ts : tsk \in ts.
(** Next, consider any ideal non-preemptive uniprocessor schedule of this arrival sequence ... *)
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_nonpreemptive_sched : is_nonpreemptive_schedule sched.
Hypothesis H_jobs_come_from_arrival_sequence:
jobs_come_from_arrival_sequence sched arr_seq.
(** ... where jobs do not execute before their arrival or after completion. *)
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.
(** Assume we have sequential tasks, i.e, jobs from the
same task execute in the order of their arrival. *)
Hypothesis H_sequential_tasks : sequential_tasks sched.
(** Next, we assume that the schedule is a work-conserving schedule... *)
Hypothesis H_work_conserving : work_conserving arr_seq sched.
(** ... and the schedule respects the policy defined by the
job_preemptable function (i.e., jobs have bounded nonpreemptive
segments). *)
Hypothesis H_respects_policy : respects_policy_at_preemption_point arr_seq sched.
(** Let's define some local names for clarity. *)
Let response_time_bounded_by :=
task_response_time_bound arr_seq sched.
Let task_rbf_changes_at A := task_rbf_changes_at tsk A.
Let bound_on_total_hep_workload_changes_at :=
bound_on_total_hep_workload_changes_at ts tsk.
(** We introduce the abbreviation "rbf" for the task request bound function,
which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T. *)
Let rbf := task_request_bound_function.
(** Next, we introduce task_rbf as an abbreviation
for the task request bound function of task tsk. *)
Let task_rbf := rbf tsk.
(** Using the sum of individual request bound functions, we define the request bound
function of all tasks (total request bound function). *)
Let total_rbf := total_request_bound_function ts.
(** We also define a bound for the priority inversion caused by jobs with lower priority. *)
Let blocking_bound :=
\max_(tsk_o <- ts | (tsk_o != tsk) && (D tsk_o > D tsk))
(task_cost tsk_o - ε).
(** Next, we define an upper bound on interfering workload received from jobs
of other tasks with higher-than-or-equal priority. *)
Let bound_on_total_hep_workload A Δ :=
\sum_(tsk_o <- ts | tsk_o != tsk)
rbf tsk_o (minn ((A + ε) + D tsk - D tsk_o) Δ).
(** Let L be any positive fixed point of the busy interval recurrence. *)
Variable L : duration.
Hypothesis H_L_positive : L > 0.
Hypothesis H_fixed_point : L = total_rbf L.
(** To reduce the time complexity of the analysis, recall the notion of search space. *)
Let is_in_search_space A :=
(A < L) && (task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A).
(** Consider any value R, and assume that for any given arrival offset A in the search space,
there is a solution of the response-time bound recurrence which is bounded by R. *)
Variable R: nat.
Hypothesis H_R_is_maximum:
forall A,
is_in_search_space A ->
exists F,
A + F = blocking_bound + (task_rbf (A + ε) - (task_cost tsk - ε))
+ bound_on_total_hep_workload A (A + F) /\
F + (task_cost tsk - ε) <= R.
(** Now, we can leverage the results for the abstract model with bounded nonpreemptive segments
to establish a response-time bound for the more concrete model of fully nonpreemptive scheduling. *)
Theorem uniprocessor_response_time_bound_fully_nonpreemptive_edf:
response_time_bounded_by tsk R.
Proof.
case: (posnP (task_cost tsk)) => [ZERO|POS].
{ intros j ARR TSK.
have ZEROj: job_cost j = 0.
{ move: (H_job_cost_le_task_cost j ARR) => NEQ.
rewrite /job_cost_le_task_cost TSK ZERO in NEQ.
by apply/eqP; rewrite -leqn0.
}
by rewrite /job_response_time_bound /completed_by ZEROj.
}
eapply uniprocessor_response_time_bound_edf_with_bounded_nonpreemptive_segments with (L0 := L).
all: eauto 2 with basic_facts.
Qed.
End RTAforFullyNonPreemptiveEDFModelwithArrivalCurves.
From rt.util Require Import all.
From rt.restructuring.behavior Require Import all.
From rt.restructuring.analysis.basic_facts Require Import all.
From rt.restructuring.model Require Import job task workload processor.ideal readiness.basic.
From rt.restructuring.model.arrival Require Import arrival_curves.
From rt.restructuring.model.schedule Require Import
work_conserving priority_based.priorities priority_based.edf priority_based.preemption_aware.
From rt.restructuring.analysis.arrival Require Import workload_bound rbf.
From rt.restructuring.analysis.edf.rta Require Import nonpr_reg.response_time_bound.
(** Assume we have a fully preemptive model. *)
From rt.restructuring.model Require Import preemption.preemptive.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
(** * RTA for Fully Preemptive EDF Model *)
(** In this section we prove the RTA theorem for the fully preemptive EDF model *)
Section RTAforFullyPreemptiveEDFModelwithArrivalCurves.
(** Consider any type of tasks ... *)
Context {Task : TaskType}.
Context `{TaskCost Task}.
Context `{TaskDeadline Task}.
(** ... and any type of jobs associated with these tasks. *)
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
(** For clarity, let's denote the relative deadline of a task as D. *)
Let D tsk := task_deadline tsk.
(** Consider the EDF policy that indicates a higher-or-equal priority relation. *)
Let EDF := EDF Task Job.
(** Consider any arrival sequence with consistent, non-duplicate arrivals. *)
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
(** Consider an arbitrary task set ts, ... *)
Variable ts : list Task.
(** ... assume that all jobs come from this task set, ... *)
Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.
(** ... and the cost of a job cannot be larger than the task cost. *)
Hypothesis H_job_cost_le_task_cost:
cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq.
(** Let max_arrivals be a family of valid arrival curves, i.e., for
any task tsk in ts [max_arrival tsk] is (1) an arrival bound of
tsk, and (2) it is a monotonic function that equals 0 for the
empty interval delta = 0. *)
Context `{MaxArrivals Task}.
Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.
(** Let tsk be any task in ts that is to be analyzed. *)
Variable tsk : Task.
Hypothesis H_tsk_in_ts : tsk \in ts.
(** Next, consider any ideal uniprocessor schedule of the arrival sequence ... *)
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_jobs_come_from_arrival_sequence:
jobs_come_from_arrival_sequence sched arr_seq.
(** ... where jobs do not execute before their arrival or after completion. *)
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.
(** Assume we have sequential tasks, i.e, jobs from the
same task execute in the order of their arrival. *)
Hypothesis H_sequential_tasks : sequential_tasks sched.
(** Next, we assume that the schedule is a work-conserving schedule... *)
Hypothesis H_work_conserving : work_conserving arr_seq sched.