floating.v 7.88 KB
Newer Older
1
2
3
Require Import rt.util.all.
Require Import rt.restructuring.behavior.all.
Require Import rt.restructuring.analysis.basic_facts.all.
4
Require Import rt.restructuring.analysis.definitions.job_properties.
5
6
7
8
9
10
11
Require Import rt.restructuring.model.task.
Require Import rt.restructuring.model.aggregate.workload.
Require Import rt.restructuring.model.processor.ideal.
Require Import rt.restructuring.model.readiness.basic.
Require Import rt.restructuring.model.arrival.arrival_curves.
Require Import rt.restructuring.model.preemption.floating.
Require Import rt.restructuring.model.schedule.work_conserving.
12
Require Import rt.restructuring.model.priority.classes.
13
Require Import rt.restructuring.model.priority.edf.
14
Require Import rt.restructuring.model.schedule.priority_driven.
15
16
17
Require Import rt.restructuring.analysis.arrival.workload_bound.
Require Import rt.restructuring.analysis.arrival.rbf.
Require Import rt.restructuring.analysis.edf.rta.nonpr_reg.response_time_bound.
18
19
20
21
22
Require Export rt.restructuring.analysis.basic_facts.preemption.job.limited.
Require Export rt.restructuring.analysis.basic_facts.preemption.task.floating.
Require Export rt.restructuring.analysis.basic_facts.preemption.rtc_threshold.floating.

Require Export rt.restructuring.analysis.facts.priority_inversion_is_bounded.
Sergey Bozhko's avatar
Sergey Bozhko committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.

(** * RTA for Model with Floating Non-Preemptive Regions *)
(** In this module we prove the RTA theorem for floating non-preemptive regions EDF model. *)
Section RTAforModelWithFloatingNonpreemptiveRegionsWithArrivalCurves.
  
  (** Consider any type of tasks ... *)
  Context {Task : TaskType}.
  Context `{TaskCost Task}.
  Context `{TaskDeadline Task}.

  (**  ... and any type of jobs associated with these tasks. *)
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.
  
  (** For clarity, let's denote the relative deadline of a task as D. *)
  Let D tsk := task_deadline tsk.

  (** Consider the EDF policy that indicates a higher-or-equal priority relation. *)
  Let EDF := EDF Task Job.

  (** Consider any arrival sequence with consistent, non-duplicate arrivals. *)
  Variable arr_seq : arrival_sequence Job.
  Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
  Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.

  (** Assume we have the model with floating nonpreemptive regions.
      I.e., for each task only the length of the maximal nonpreemptive
      segment is known _and_ each job level is divided into a number
      of nonpreemptive segments by inserting preemption points. *)
  Context `{JobPreemptionPoints Job}
          `{TaskMaxNonpreemptiveSegment Task}.
  Hypothesis H_valid_task_model_with_floating_nonpreemptive_regions:
    valid_model_with_floating_nonpreemptive_regions arr_seq.
  
  (** Consider an arbitrary task set ts, ... *)
  Variable ts : list Task.

  (** ... assume that all jobs come from this task set, ... *)
  Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.

  (** ... and the cost of a job cannot be larger than the task cost. *)
  Hypothesis H_job_cost_le_task_cost:
    cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq.

  (** Let max_arrivals be a family of valid arrival curves, i.e., for
      any task tsk in ts [max_arrival tsk] is (1) an arrival bound of
      tsk, and (2) it is a monotonic function that equals 0 for the
      empty interval delta = 0. *)
  Context `{MaxArrivals Task}.
  Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
  Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.

  (** Let tsk be any task in ts that is to be analyzed. *)
  Variable tsk : Task.
  Hypothesis H_tsk_in_ts : tsk \in ts.

  (** Next, consider any ideal uniprocessor schedule with limited
      preemptions of this arrival sequence ... *)
  Variable sched : schedule (ideal.processor_state Job).
  Hypothesis H_jobs_come_from_arrival_sequence:
    jobs_come_from_arrival_sequence sched arr_seq.
  Hypothesis H_schedule_with_limited_preemptions:
    valid_schedule_with_limited_preemptions arr_seq sched.
  
  (** ... where jobs do not execute before their arrival or after completion. *)
  Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
  Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.

  (** Assume we have sequential tasks, i.e, jobs from the 
     same task execute in the order of their arrival. *)
  Hypothesis H_sequential_tasks : sequential_tasks sched.

  (** Next, we assume that the schedule is a work-conserving schedule... *)
  Hypothesis H_work_conserving : work_conserving arr_seq sched.
  
  (** ... and the schedule respects the policy defined by the
      job_preemptable function (i.e., jobs have bounded nonpreemptive
      segments). *)
  Hypothesis H_respects_policy : respects_policy_at_preemption_point arr_seq sched.

  (** Let's define some local names for clarity. *)
  Let response_time_bounded_by :=
    task_response_time_bound arr_seq sched.
  Let task_rbf_changes_at A := task_rbf_changes_at tsk A.
  Let bound_on_total_hep_workload_changes_at :=
    bound_on_total_hep_workload_changes_at ts tsk.
  
  (** We introduce the abbreviation "rbf" for the task request bound function,
       which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T. *)
  Let rbf := task_request_bound_function.

  (** Next, we introduce task_rbf as an abbreviation
      for the task request bound function of task tsk. *)
  Let task_rbf := rbf tsk.

  (** Using the sum of individual request bound functions, we define the request bound 
      function of all tasks (total request bound function). *)
  Let total_rbf := total_request_bound_function ts.
  
  (** We define a bound for the priority inversion caused by jobs with lower priority. *)
  Definition blocking_bound :=
    \max_(tsk_other <- ts | (tsk_other != tsk) && (D tsk_other > D tsk))
     (task_max_nonpreemptive_segment tsk_other - ε).
  
  (** Next, we define an upper bound on interfering workload received from jobs 
      of other tasks with higher-than-or-equal priority. *)
  Let bound_on_total_hep_workload A Δ :=
    \sum_(tsk_o <- ts | tsk_o != tsk)
     rbf tsk_o (minn ((A + ε) + D tsk - D tsk_o) Δ).
  
  (** Let L be any positive fixed point of the busy interval recurrence. *)
  Variable L : duration.
  Hypothesis H_L_positive : L > 0.
  Hypothesis H_fixed_point : L = total_rbf L.

  (** To reduce the time complexity of the analysis, recall the notion of search space. *)
  Let is_in_search_space (A : duration) :=
    (A < L) && (task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A).
  
  (** Consider any value R, and assume that for any given arrival offset A in the search space,
      there is a solution of the response-time bound recurrence which is bounded by R. *)
  Variable R : duration.
  Hypothesis H_R_is_maximum:
    forall (A : duration),
      is_in_search_space A -> 
      exists (F : duration),
        A + F = blocking_bound + task_rbf (A + ε) + bound_on_total_hep_workload A (A + F) /\
        F <= R.

  (** Now, we can leverage the results for the abstract model with
      bounded nonpreemptive segments to establish a response-time
      bound for the more concrete model with floating nonpreemptive
      regions.  *)
  Theorem uniprocessor_response_time_bound_edf_with_floating_nonpreemptive_regions:
    response_time_bounded_by tsk R.  
  Proof.
    move: (H_valid_task_model_with_floating_nonpreemptive_regions) => [LIMJ JMLETM].
    move: (LIMJ) => [BEG [END _]].
    eapply uniprocessor_response_time_bound_edf_with_bounded_nonpreemptive_segments with (L0 := L).
    all: eauto 2 with basic_facts.
    { rewrite subnn.
      intros A SP.
      apply H_R_is_maximum in SP.
      move: SP => [F [EQ LE]].
      exists F.
        by rewrite subn0 addn0; split.
    }
  Qed.

End RTAforModelWithFloatingNonpreemptiveRegionsWithArrivalCurves.