floating.v 7.89 KB
Newer Older
1 2 3
Require Import rt.util.all.
Require Import rt.restructuring.behavior.all.
Require Import rt.restructuring.analysis.basic_facts.all.
4
Require Import rt.restructuring.analysis.definitions.job_properties.
5
Require Import rt.restructuring.model.task.concept.
6 7 8 9 10 11
Require Import rt.restructuring.model.aggregate.workload.
Require Import rt.restructuring.model.processor.ideal.
Require Import rt.restructuring.model.readiness.basic.
Require Import rt.restructuring.model.arrival.arrival_curves.
Require Import rt.restructuring.model.preemption.floating.
Require Import rt.restructuring.model.schedule.work_conserving.
12
Require Import rt.restructuring.model.priority.classes.
13
Require Import rt.restructuring.analysis.facts.edf.
14
Require Import rt.restructuring.model.schedule.priority_driven.
15 16 17
Require Import rt.restructuring.analysis.arrival.workload_bound.
Require Import rt.restructuring.analysis.arrival.rbf.
Require Import rt.restructuring.analysis.edf.rta.nonpr_reg.response_time_bound.
18 19 20 21 22
Require Export rt.restructuring.analysis.basic_facts.preemption.job.limited.
Require Export rt.restructuring.analysis.basic_facts.preemption.task.floating.
Require Export rt.restructuring.analysis.basic_facts.preemption.rtc_threshold.floating.

Require Export rt.restructuring.analysis.facts.priority_inversion_is_bounded.
Sergey Bozhko's avatar
Sergey Bozhko committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.

(** * RTA for Model with Floating Non-Preemptive Regions *)
(** In this module we prove the RTA theorem for floating non-preemptive regions EDF model. *)
Section RTAforModelWithFloatingNonpreemptiveRegionsWithArrivalCurves.
  
  (** Consider any type of tasks ... *)
  Context {Task : TaskType}.
  Context `{TaskCost Task}.
  Context `{TaskDeadline Task}.

  (**  ... and any type of jobs associated with these tasks. *)
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.
  
  (** For clarity, let's denote the relative deadline of a task as D. *)
  Let D tsk := task_deadline tsk.

  (** Consider the EDF policy that indicates a higher-or-equal priority relation. *)
45
  Let EDF := EDF Job.
Sergey Bozhko's avatar
Sergey Bozhko committed
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

  (** Consider any arrival sequence with consistent, non-duplicate arrivals. *)
  Variable arr_seq : arrival_sequence Job.
  Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
  Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.

  (** Assume we have the model with floating nonpreemptive regions.
      I.e., for each task only the length of the maximal nonpreemptive
      segment is known _and_ each job level is divided into a number
      of nonpreemptive segments by inserting preemption points. *)
  Context `{JobPreemptionPoints Job}
          `{TaskMaxNonpreemptiveSegment Task}.
  Hypothesis H_valid_task_model_with_floating_nonpreemptive_regions:
    valid_model_with_floating_nonpreemptive_regions arr_seq.
  
  (** Consider an arbitrary task set ts, ... *)
  Variable ts : list Task.

  (** ... assume that all jobs come from this task set, ... *)
  Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.

  (** ... and the cost of a job cannot be larger than the task cost. *)
  Hypothesis H_job_cost_le_task_cost:
    cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq.

  (** Let max_arrivals be a family of valid arrival curves, i.e., for
      any task tsk in ts [max_arrival tsk] is (1) an arrival bound of
      tsk, and (2) it is a monotonic function that equals 0 for the
      empty interval delta = 0. *)
  Context `{MaxArrivals Task}.
  Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
  Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.

  (** Let tsk be any task in ts that is to be analyzed. *)
  Variable tsk : Task.
  Hypothesis H_tsk_in_ts : tsk \in ts.

  (** Next, consider any ideal uniprocessor schedule with limited
      preemptions of this arrival sequence ... *)
  Variable sched : schedule (ideal.processor_state Job).
  Hypothesis H_jobs_come_from_arrival_sequence:
    jobs_come_from_arrival_sequence sched arr_seq.
  Hypothesis H_schedule_with_limited_preemptions:
    valid_schedule_with_limited_preemptions arr_seq sched.
  
  (** ... where jobs do not execute before their arrival or after completion. *)
  Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
  Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.

  (** Assume we have sequential tasks, i.e, jobs from the 
     same task execute in the order of their arrival. *)
  Hypothesis H_sequential_tasks : sequential_tasks sched.

  (** Next, we assume that the schedule is a work-conserving schedule... *)
  Hypothesis H_work_conserving : work_conserving arr_seq sched.
  
  (** ... and the schedule respects the policy defined by the
      job_preemptable function (i.e., jobs have bounded nonpreemptive
      segments). *)
  Hypothesis H_respects_policy : respects_policy_at_preemption_point arr_seq sched.

  (** Let's define some local names for clarity. *)
  Let response_time_bounded_by :=
    task_response_time_bound arr_seq sched.
  Let task_rbf_changes_at A := task_rbf_changes_at tsk A.
  Let bound_on_total_hep_workload_changes_at :=
    bound_on_total_hep_workload_changes_at ts tsk.
  
  (** We introduce the abbreviation "rbf" for the task request bound function,
       which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T. *)
  Let rbf := task_request_bound_function.

  (** Next, we introduce task_rbf as an abbreviation
      for the task request bound function of task tsk. *)
  Let task_rbf := rbf tsk.

  (** Using the sum of individual request bound functions, we define the request bound 
      function of all tasks (total request bound function). *)
  Let total_rbf := total_request_bound_function ts.
  
  (** We define a bound for the priority inversion caused by jobs with lower priority. *)
  Definition blocking_bound :=
    \max_(tsk_other <- ts | (tsk_other != tsk) && (D tsk_other > D tsk))
     (task_max_nonpreemptive_segment tsk_other - ε).
  
  (** Next, we define an upper bound on interfering workload received from jobs 
      of other tasks with higher-than-or-equal priority. *)
  Let bound_on_total_hep_workload A Δ :=
    \sum_(tsk_o <- ts | tsk_o != tsk)
     rbf tsk_o (minn ((A + ε) + D tsk - D tsk_o) Δ).
  
  (** Let L be any positive fixed point of the busy interval recurrence. *)
  Variable L : duration.
  Hypothesis H_L_positive : L > 0.
  Hypothesis H_fixed_point : L = total_rbf L.

  (** To reduce the time complexity of the analysis, recall the notion of search space. *)
  Let is_in_search_space (A : duration) :=
    (A < L) && (task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A).
  
  (** Consider any value R, and assume that for any given arrival offset A in the search space,
      there is a solution of the response-time bound recurrence which is bounded by R. *)
  Variable R : duration.
  Hypothesis H_R_is_maximum:
    forall (A : duration),
      is_in_search_space A -> 
      exists (F : duration),
        A + F = blocking_bound + task_rbf (A + ε) + bound_on_total_hep_workload A (A + F) /\
        F <= R.

  (** Now, we can leverage the results for the abstract model with
      bounded nonpreemptive segments to establish a response-time
      bound for the more concrete model with floating nonpreemptive
      regions.  *)
  Theorem uniprocessor_response_time_bound_edf_with_floating_nonpreemptive_regions:
    response_time_bounded_by tsk R.  
  Proof.
    move: (H_valid_task_model_with_floating_nonpreemptive_regions) => [LIMJ JMLETM].
    move: (LIMJ) => [BEG [END _]].
    eapply uniprocessor_response_time_bound_edf_with_bounded_nonpreemptive_segments with (L0 := L).
    all: eauto 2 with basic_facts.
    { rewrite subnn.
      intros A SP.
      apply H_R_is_maximum in SP.
      move: SP => [F [EQ LE]].
      exists F.
        by rewrite subn0 addn0; split.
    }
  Qed.

End RTAforModelWithFloatingNonpreemptiveRegionsWithArrivalCurves.