nat.v 5.3 KB
 Felipe Cerqueira committed Mar 31, 2016 1 ``````Require Import rt.util.tactics rt.util.divround rt.util.ssromega. `````` Felipe Cerqueira committed May 05, 2016 2 ``````From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div. `````` Felipe Cerqueira committed Mar 31, 2016 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 `````` (* Additional lemmas about natural numbers. *) Section NatLemmas. Lemma addnb (b1 b2 : bool) : (b1 + b2) != 0 = b1 || b2. Proof. by destruct b1,b2; rewrite ?addn0 ?add0n ?addn1 ?orTb ?orbT ?orbF ?orFb. Qed. Lemma subh1 : forall m n p, m >= n -> m - n + p = m + p - n. Proof. by ins; ssromega. Qed. Lemma subh2 : forall m1 m2 n1 n2, m1 >= m2 -> n1 >= n2 -> (m1 + n1) - (m2 + n2) = m1 - m2 + (n1 - n2). Proof. by ins; ssromega. Qed. Lemma subh3 : forall m n p, m + p <= n -> n >= p -> m <= n - p. Proof. ins. rewrite <- leq_add2r with (p := p). by rewrite subh1 // -addnBA // subnn addn0. Qed. Lemma subh4: forall m n p, m <= n -> p <= n -> (m == n - p) = (p == n - m). Proof. intros; apply/eqP. destruct (p == n - m) eqn:EQ. by move: EQ => /eqP EQ; rewrite EQ subKn. by apply negbT in EQ; unfold not; intro BUG; rewrite BUG subKn ?eq_refl in EQ. Qed. Lemma addmovr: forall m n p, m >= n -> (m - n = p <-> m = p + n). Proof. by split; ins; ssromega. Qed. Lemma addmovl: forall m n p, m >= n -> (p = m - n <-> p + n = m). Proof. by split; ins; ssromega. Qed. Lemma ltn_div_trunc : forall m n d, d > 0 -> m %/ d < n %/ d -> m < n. Proof. intros m n d GT0 DIV; rewrite ltn_divLR in DIV; last by ins. by apply leq_trans with (n := n %/ d * d); [by ins| by apply leq_trunc_div]. Qed. Lemma subndiv_eq_mod: forall n d, n - n %/ d * d = n %% d. Proof. by ins; rewrite {1}(divn_eq n d) addnC -addnBA // subnn addn0. Qed. Lemma ltSnm : forall n m, n.+1 < m -> n < m. Proof. by ins; apply ltn_trans with (n := n.+1); [by apply ltnSn |by ins]. Qed. Lemma divSn_cases : forall n d, d > 1 -> (n %/ d = n.+1 %/d /\ n %% d + 1 = n.+1 %% d) \/ (n %/ d + 1 = n.+1 %/ d). Proof. ins; set x := n %/ d; set y := n %% d. assert (GT0: d > 0); first by apply ltn_trans with (n := 1). destruct (ltngtP y (d - 1)) as [LTN | BUG | GE]; [left | | right]; first 1 last. { exploit (@ltn_pmod n d); [by apply GT0 | intro LTd; fold y in LTd]. rewrite -(ltn_add2r 1) [y+1]addn1 ltnS in BUG. rewrite subh1 in BUG; last by apply GT0. rewrite -addnBA // subnn addn0 in BUG. by apply (leq_ltn_trans BUG) in LTd; rewrite ltnn in LTd. } { (* Case 1: y = d - 1*) move: GE => /eqP GE; rewrite -(eqn_add2r 1) in GE. rewrite subh1 in GE; last by apply GT0. rewrite -addnBA // subnn addn0 in GE. move: GE => /eqP GE. apply f_equal with (f := fun x => x %/ d) in GE. rewrite divnn GT0 /= in GE. unfold x; rewrite -GE. rewrite -divnMDl; last by apply GT0. f_equal; rewrite addnA. by rewrite -divn_eq addn1. } { assert (EQDIV: n %/ d = n.+1 %/ d). { apply/eqP; rewrite eqn_leq; apply/andP; split; first by apply leq_div2r, leqnSn. rewrite leq_divRL; last by apply GT0. rewrite -ltnS {2}(divn_eq n.+1 d). rewrite -{1}[_ %/ d * d]addn0 ltn_add2l. unfold y in *. rewrite ltnNge; apply/negP; unfold not; intro BUG. rewrite leqn0 in BUG; move: BUG => /eqP BUG. rewrite -(modnn d) -addn1 in BUG. destruct d; first by rewrite sub0n in LTN. move: BUG; move/eqP; rewrite -[d.+1]addn1 eqn_modDr [d+1]addn1; move => /eqP BUG. rewrite BUG -[d.+1]addn1 -addnBA // subnn addn0 in LTN. by rewrite modn_small in LTN; [by rewrite ltnn in LTN | by rewrite addn1 ltnSn]. } (* Case 2: y < d - 1 *) split; first by rewrite -EQDIV. { unfold x, y in *. rewrite -2!subndiv_eq_mod. rewrite subh1 ?addn1; last by apply leq_trunc_div. rewrite EQDIV; apply/eqP. rewrite -(eqn_add2r (n%/d*d)). by rewrite subh1; last by apply leq_trunc_div. } } Qed. Lemma ceil_neq0 : forall x y, x > 0 -> y > 0 -> div_ceil x y > 0. Proof. unfold div_ceil; intros x y GEx GEy. destruct (y %| x) eqn:DIV; last by done. by rewrite divn_gt0; first by apply dvdn_leq. Qed. Lemma leq_divceil2r : forall d m n, d > 0 -> m <= n -> div_ceil m d <= div_ceil n d. Proof. unfold div_ceil; intros d m n GT0 LE. destruct (d %| m) eqn:DIVm, (d %| n) eqn:DIVn; [by apply leq_div2r | | | by apply leq_div2r]. by apply leq_trans with (n := n %/ d); first by apply leq_div2r. { rewrite leq_eqVlt in LE; move: LE => /orP [/eqP EQ | LT]; first by subst; rewrite DIVn in DIVm. rewrite ltn_divLR //. apply leq_trans with (n := n); first by done. by apply eq_leq; symmetry; apply/eqP; rewrite -dvdn_eq. } Qed. Lemma min_lt_same : forall x y z, minn x z < minn y z -> x < y. Proof. unfold minn; ins; desf. { apply negbT in Heq0; rewrite -ltnNge in Heq0. by apply leq_trans with (n := z). } { apply negbT in Heq; rewrite -ltnNge in Heq. by apply (ltn_trans H) in Heq0; rewrite ltnn in Heq0. } by rewrite ltnn in H. Qed. End NatLemmas.``````