diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index 1568c9917f5f2a101f72ab072725171ad2f57296..cfe0d6106d201d1490fe587c5c6c29fc56fca8c5 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -1325,17 +1325,6 @@ Section sigT. Definition sigT_dist_proj1 n {x y} : x ≡{n}≡ y → projT1 x = projT1 y := proj1_ex. Definition sigT_equiv_proj1 x y : x ≡ y → projT1 x = projT1 y := λ H, proj1_ex (H 0). - (** [existT] is "non-expansive". *) - Lemma existT_ne n {i1 i2} {v1 : P i1} {v2 : P i2} : - ∀ (eq : i1 = i2), (rew f_equal P eq in v1 ≡{n}≡ v2) → - existT i1 v1 ≡{n}≡ existT i2 v2. - Proof. intros ->; simpl. exists eq_refl => /=. done. Qed. - - Lemma existT_proper {i1 i2} {v1 : P i1} {v2 : P i2} : - ∀ (eq : i1 = i2), (rew f_equal P eq in v1 ≡ v2) → - existT i1 v1 ≡ existT i2 v2. - Proof. intros eq Heq n. apply (existT_ne n eq), equiv_dist, Heq. Qed. - Definition sigT_ofe_mixin : OfeMixin (sigT P). Proof. split => // n. @@ -1353,6 +1342,26 @@ Section sigT. Canonical Structure sigTO : ofeT := OfeT (sigT P) sigT_ofe_mixin. + (** [existT] is "non-expansive" — general, dependently-typed statement. *) + Lemma existT_ne n {i1 i2} {v1 : P i1} {v2 : P i2} : + ∀ (eq : i1 = i2), (rew f_equal P eq in v1 ≡{n}≡ v2) → + existT i1 v1 ≡{n}≡ existT i2 v2. + Proof. intros ->; simpl. exists eq_refl => /=. done. Qed. + + Lemma existT_proper {i1 i2} {v1 : P i1} {v2 : P i2} : + ∀ (eq : i1 = i2), (rew f_equal P eq in v1 ≡ v2) → + existT i1 v1 ≡ existT i2 v2. + Proof. intros eq Heq n. apply (existT_ne n eq), equiv_dist, Heq. Qed. + + (** [existT] is "non-expansive" — non-dependently-typed version. *) + Global Instance existT_ne_2 a : NonExpansive (@existT A P a). + Proof. move => ??? Heq. apply (existT_ne _ eq_refl Heq). Qed. + + Global Instance existT_proper_2 a : Proper ((≡) ==> (≡)) (@existT A P a). + Proof. apply ne_proper, _. Qed. + (* XXX Which do you prefer? *) + (* Proof. move => ?? Heq. apply (existT_proper eq_refl Heq). Qed. *) + Implicit Types (c : chain sigTO). Global Instance sigT_discrete x : Discrete (projT2 x) → Discrete x.