diff --git a/algebra/upred.v b/algebra/upred.v index df3809e304be2f689c12b9d8de9c04dd1be6c06e..8f04cdf1ea80198fa0831e02a2bb6dd830ca806c 100644 --- a/algebra/upred.v +++ b/algebra/upred.v @@ -1181,11 +1181,6 @@ Proof. exists (y ⋅ x3); split; first by rewrite -assoc. exists y; eauto using cmra_includedN_l. Qed. -Lemma now_True_rvs P : ◇ (|=r=> P) ⊢ (|=r=> ◇ P). -Proof. - rewrite /uPred_now_True. apply or_elim; auto using rvs_mono. - by rewrite -rvs_intro -or_intro_l. -Qed. (** * Derived rules *) Global Instance rvs_mono' : Proper ((⊢) ==> (⊢)) (@uPred_rvs M). @@ -1205,6 +1200,11 @@ Proof. intros; rewrite (rvs_ownM_updateP _ (y =)); last by apply cmra_update_updateP. by apply rvs_mono, exist_elim=> y'; apply pure_elim_l=> ->. Qed. +Lemma now_True_rvs P : ◇ (|=r=> P) ⊢ (|=r=> ◇ P). +Proof. + rewrite /uPred_now_True. apply or_elim; auto using rvs_mono. + by rewrite -rvs_intro -or_intro_l. +Qed. (* Products *) Lemma prod_equivI {A B : cofeT} (x y : A * B) : x ≡ y ⊣⊢ x.1 ≡ y.1 ∧ x.2 ≡ y.2.