diff --git a/CHANGELOG.md b/CHANGELOG.md index 4c5f34611e5fadb87ba50025cc99c96ec0c63ffb..6212f09f39d6119895d6284dc61b88630d0650d9 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -19,6 +19,11 @@ Changes in and extensions of the theory: experimental. * [#] The adequacy statement for weakest preconditions now also involves the final state. +* [#] Add the notion of an "observation" to the language interface, so that + every reduction step can optionally be marked with an event, and an execution + trace has a matching list of events. Change WP so that it is told the entire + future trace of observations from the beginning. Use this in heap_lang to + implement prophecy variables. * [#] The Löb rule is now a derived rule; it follows from later-intro, later being contractive and the fact that we can take fixpoints of contractive functions. diff --git a/_CoqProject b/_CoqProject index 92fc6bd868e7653ba9dcbda026a271ce755ef9f5..e587aa9aaa5622b2a0ef7d38a31d2f61e8139e40 100644 --- a/_CoqProject +++ b/_CoqProject @@ -87,12 +87,14 @@ theories/heap_lang/notation.v theories/heap_lang/proofmode.v theories/heap_lang/adequacy.v theories/heap_lang/total_adequacy.v +theories/heap_lang/proph_map.v theories/heap_lang/lib/spawn.v theories/heap_lang/lib/par.v theories/heap_lang/lib/assert.v theories/heap_lang/lib/lock.v theories/heap_lang/lib/spin_lock.v theories/heap_lang/lib/ticket_lock.v +theories/heap_lang/lib/coin_flip.v theories/heap_lang/lib/counter.v theories/heap_lang/lib/atomic_heap.v theories/heap_lang/lib/increment.v diff --git a/theories/heap_lang/adequacy.v b/theories/heap_lang/adequacy.v index 1b7dfabb92db6399fb7d7ba33ffcecb1a42d5e7e..02301b8fb6d4d5a73dad9472e2f9234066a6b51d 100644 --- a/theories/heap_lang/adequacy.v +++ b/theories/heap_lang/adequacy.v @@ -1,15 +1,16 @@ From iris.program_logic Require Export weakestpre adequacy. From iris.algebra Require Import auth. -From iris.heap_lang Require Import proofmode notation. +From iris.heap_lang Require Import proofmode notation proph_map. From iris.proofmode Require Import tactics. Set Default Proof Using "Type". Class heapPreG Σ := HeapPreG { heap_preG_iris :> invPreG Σ; - heap_preG_heap :> gen_heapPreG loc val Σ + heap_preG_heap :> gen_heapPreG loc val Σ; + heap_preG_proph :> proph_mapPreG proph_id val Σ }. -Definition heapΣ : gFunctors := #[invΣ; gen_heapΣ loc val]. +Definition heapΣ : gFunctors := #[invΣ; gen_heapΣ loc val; proph_mapΣ proph_id val]. Instance subG_heapPreG {Σ} : subG heapΣ Σ → heapPreG Σ. Proof. solve_inG. Qed. @@ -17,8 +18,10 @@ Definition heap_adequacy Σ `{heapPreG Σ} s e σ φ : (∀ `{heapG Σ}, WP e @ s; ⊤ {{ v, ⌜φ v⌠}}%I) → adequate s e σ (λ v _, φ v). Proof. - intros Hwp; eapply (wp_adequacy _ _); iIntros (?) "". - iMod (gen_heap_init σ) as (?) "Hh". - iModIntro. iExists gen_heap_ctx. iFrame "Hh". - iApply (Hwp (HeapG _ _ _)). + intros Hwp; eapply (wp_adequacy _ _); iIntros (??) "". + iMod (gen_heap_init σ.(heap)) as (?) "Hh". + iMod (proph_map_init κs σ.(used_proph_id)) as (?) "Hp". + iModIntro. + iExists (λ σ κs, (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I). iFrame. + iApply (Hwp (HeapG _ _ _ _)). Qed. diff --git a/theories/heap_lang/lang.v b/theories/heap_lang/lang.v index 235fb97b4222bcb19fd8b7ab73f1eb33842ee52b..697a59f78ee1d5843057731dc7ade7088e25fca1 100644 --- a/theories/heap_lang/lang.v +++ b/theories/heap_lang/lang.v @@ -12,8 +12,14 @@ Set Default Proof Using "Type". [b] are evaluated. With left-to-right evaluation, that triple is basically useless unless the user let-expands [b]. -*) +- For prophecy variables, we annotate the reduction steps with an "observation" + and tweak adequacy such that WP knows all future observations. There is + another possible choice: Use non-deterministic choice when creating a prophecy + variable ([NewProph]), and when resolving it ([ResolveProph]) make the + program diverge unless the variable matches. That, however, requires an + erasure proof that this endless loop does not make specifications useless. +*) Delimit Scope expr_scope with E. Delimit Scope val_scope with V. @@ -23,9 +29,11 @@ Open Scope Z_scope. (** Expressions and vals. *) Definition loc := positive. (* Really, any countable type. *) +Definition proph_id := positive. Inductive base_lit : Set := - | LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitLoc (l : loc). + | LitInt (n : Z) | LitBool (b : bool) | LitUnit + | LitLoc (l : loc) | LitProphecy (p: proph_id). Inductive un_op : Set := | NegOp | MinusUnOp. Inductive bin_op : Set := @@ -75,7 +83,10 @@ Inductive expr := | Load (e : expr) | Store (e1 : expr) (e2 : expr) | CAS (e0 : expr) (e1 : expr) (e2 : expr) - | FAA (e1 : expr) (e2 : expr). + | FAA (e1 : expr) (e2 : expr) + (* Prophecy *) + | NewProph + | ResolveProph (e1 : expr) (e2 : expr). Bind Scope expr_scope with expr. @@ -83,10 +94,10 @@ Fixpoint is_closed (X : list string) (e : expr) : bool := match e with | Var x => bool_decide (x ∈ X) | Rec f x e => is_closed (f :b: x :b: X) e - | Lit _ => true + | Lit _ | NewProph => true | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e => is_closed X e - | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 | FAA e1 e2 => + | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 | FAA e1 e2 | ResolveProph e1 e2 => is_closed X e1 && is_closed X e2 | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2 @@ -107,6 +118,8 @@ Inductive val := Bind Scope val_scope with val. +Definition observation : Set := proph_id * val. + Fixpoint of_val (v : val) : expr := match v with | RecV f x e => Rec f x e @@ -160,7 +173,10 @@ Definition val_is_unboxed (v : val) : Prop := end. (** The state: heaps of vals. *) -Definition state := gmap loc val. +Record state : Type := { + heap: gmap loc val; + used_proph_id: gset proph_id; +}. (** Equality and other typeclass stuff *) Lemma to_of_val v : to_val (of_val v) = Some v. @@ -192,11 +208,13 @@ Defined. Instance base_lit_countable : Countable base_lit. Proof. refine (inj_countable' (λ l, match l with - | LitInt n => inl (inl n) | LitBool b => inl (inr b) - | LitUnit => inr (inl ()) | LitLoc l => inr (inr l) + | LitInt n => (inl (inl n), None) | LitBool b => (inl (inr b), None) + | LitUnit => (inr (inl ()), None) | LitLoc l => (inr (inr l), None) + | LitProphecy p => (inr (inl ()), Some p) end) (λ l, match l with - | inl (inl n) => LitInt n | inl (inr b) => LitBool b - | inr (inl ()) => LitUnit | inr (inr l) => LitLoc l + | (inl (inl n), None) => LitInt n | (inl (inr b), None) => LitBool b + | (inr (inl ()), None) => LitUnit | (inr (inr l), None) => LitLoc l + | (_, Some p) => LitProphecy p end) _); by intros []. Qed. Instance un_op_finite : Countable un_op. @@ -225,12 +243,12 @@ Instance expr_countable : Countable expr. Proof. set (enc := fix go e := match e with - | Var x => GenLeaf (inl (inl x)) - | Rec f x e => GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e] + | Var x => GenLeaf (Some (inl (inl x))) + | Rec f x e => GenNode 0 [GenLeaf (Some ((inl (inr f)))); GenLeaf (Some (inl (inr x))); go e] | App e1 e2 => GenNode 1 [go e1; go e2] - | Lit l => GenLeaf (inr (inl l)) - | UnOp op e => GenNode 2 [GenLeaf (inr (inr (inl op))); go e] - | BinOp op e1 e2 => GenNode 3 [GenLeaf (inr (inr (inr op))); go e1; go e2] + | Lit l => GenLeaf (Some (inr (inl l))) + | UnOp op e => GenNode 2 [GenLeaf (Some (inr (inr (inl op)))); go e] + | BinOp op e1 e2 => GenNode 3 [GenLeaf (Some (inr (inr (inr op)))); go e1; go e2] | If e0 e1 e2 => GenNode 4 [go e0; go e1; go e2] | Pair e1 e2 => GenNode 5 [go e1; go e2] | Fst e => GenNode 6 [go e] @@ -244,15 +262,17 @@ Proof. | Store e1 e2 => GenNode 14 [go e1; go e2] | CAS e0 e1 e2 => GenNode 15 [go e0; go e1; go e2] | FAA e1 e2 => GenNode 16 [go e1; go e2] + | NewProph => GenLeaf None + | ResolveProph e1 e2 => GenNode 17 [go e1; go e2] end). set (dec := fix go e := match e with - | GenLeaf (inl (inl x)) => Var x - | GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => Rec f x (go e) + | GenLeaf (Some(inl (inl x))) => Var x + | GenNode 0 [GenLeaf (Some (inl (inr f))); GenLeaf (Some (inl (inr x))); e] => Rec f x (go e) | GenNode 1 [e1; e2] => App (go e1) (go e2) - | GenLeaf (inr (inl l)) => Lit l - | GenNode 2 [GenLeaf (inr (inr (inl op))); e] => UnOp op (go e) - | GenNode 3 [GenLeaf (inr (inr (inr op))); e1; e2] => BinOp op (go e1) (go e2) + | GenLeaf (Some (inr (inl l))) => Lit l + | GenNode 2 [GenLeaf (Some (inr (inr (inl op)))); e] => UnOp op (go e) + | GenNode 3 [GenLeaf (Some (inr (inr (inr op)))); e1; e2] => BinOp op (go e1) (go e2) | GenNode 4 [e0; e1; e2] => If (go e0) (go e1) (go e2) | GenNode 5 [e1; e2] => Pair (go e1) (go e2) | GenNode 6 [e] => Fst (go e) @@ -266,6 +286,8 @@ Proof. | GenNode 14 [e1; e2] => Store (go e1) (go e2) | GenNode 15 [e0; e1; e2] => CAS (go e0) (go e1) (go e2) | GenNode 16 [e1; e2] => FAA (go e1) (go e2) + | GenLeaf None => NewProph + | GenNode 17 [e1; e2] => ResolveProph (go e1) (go e2) | _ => Lit LitUnit (* dummy *) end). refine (inj_countable' enc dec _). intros e. induction e; f_equal/=; auto. @@ -273,6 +295,8 @@ Qed. Instance val_countable : Countable val. Proof. refine (inj_countable of_val to_val _); auto using to_of_val. Qed. +Instance state_inhabited : Inhabited state := + populate {| heap := inhabitant; used_proph_id := inhabitant |}. Instance expr_inhabited : Inhabited expr := populate (Lit LitUnit). Instance val_inhabited : Inhabited val := populate (LitV LitUnit). @@ -303,7 +327,9 @@ Inductive ectx_item := | CasMCtx (e0 : expr) (v2 : val) | CasRCtx (e0 : expr) (e1 : expr) | FaaLCtx (v2 : val) - | FaaRCtx (e1 : expr). + | FaaRCtx (e1 : expr) + | ProphLCtx (v2 : val) + | ProphRCtx (e1 : expr). Definition fill_item (Ki : ectx_item) (e : expr) : expr := match Ki with @@ -329,6 +355,8 @@ Definition fill_item (Ki : ectx_item) (e : expr) : expr := | CasRCtx e0 e1 => CAS e0 e1 e | FaaLCtx v2 => FAA e (of_val v2) | FaaRCtx e1 => FAA e1 e + | ProphLCtx v2 => ResolveProph e (of_val v2) + | ProphRCtx e1 => ResolveProph e1 e end. (** Substitution *) @@ -354,6 +382,8 @@ Fixpoint subst (x : string) (es : expr) (e : expr) : expr := | Store e1 e2 => Store (subst x es e1) (subst x es e2) | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2) | FAA e1 e2 => FAA (subst x es e1) (subst x es e2) + | NewProph => NewProph + | ResolveProph e1 e2 => ResolveProph (subst x es e1) (subst x es e2) end. Definition subst' (mx : binder) (es : expr) : expr → expr := @@ -412,62 +442,90 @@ Definition vals_cas_compare_safe (vl v1 : val) : Prop := val_is_unboxed vl ∨ val_is_unboxed v1. Arguments vals_cas_compare_safe !_ !_ /. -Inductive head_step : expr → state → expr → state → list (expr) → Prop := +Definition state_upd_heap (f: gmap loc val → gmap loc val) (σ: state) : state := + {| heap := f σ.(heap); used_proph_id := σ.(used_proph_id) |}. +Arguments state_upd_heap _ !_ /. +Definition state_upd_used_proph_id (f: gset proph_id → gset proph_id) (σ: state) : state := + {| heap := σ.(heap); used_proph_id := f σ.(used_proph_id) |}. +Arguments state_upd_used_proph_id _ !_ /. + +Inductive head_step : expr → state → list observation → expr → state → list (expr) → Prop := | BetaS f x e1 e2 v2 e' σ : to_val e2 = Some v2 → Closed (f :b: x :b: []) e1 → e' = subst' x (of_val v2) (subst' f (Rec f x e1) e1) → - head_step (App (Rec f x e1) e2) σ e' σ [] + head_step (App (Rec f x e1) e2) σ [] e' σ [] | UnOpS op e v v' σ : to_val e = Some v → un_op_eval op v = Some v' → - head_step (UnOp op e) σ (of_val v') σ [] + head_step (UnOp op e) σ [] (of_val v') σ [] | BinOpS op e1 e2 v1 v2 v' σ : to_val e1 = Some v1 → to_val e2 = Some v2 → bin_op_eval op v1 v2 = Some v' → - head_step (BinOp op e1 e2) σ (of_val v') σ [] + head_step (BinOp op e1 e2) σ [] (of_val v') σ [] | IfTrueS e1 e2 σ : - head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ [] + head_step (If (Lit $ LitBool true) e1 e2) σ [] e1 σ [] | IfFalseS e1 e2 σ : - head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ [] + head_step (If (Lit $ LitBool false) e1 e2) σ [] e2 σ [] | FstS e1 v1 e2 v2 σ : to_val e1 = Some v1 → to_val e2 = Some v2 → - head_step (Fst (Pair e1 e2)) σ e1 σ [] + head_step (Fst (Pair e1 e2)) σ [] e1 σ [] | SndS e1 v1 e2 v2 σ : to_val e1 = Some v1 → to_val e2 = Some v2 → - head_step (Snd (Pair e1 e2)) σ e2 σ [] + head_step (Snd (Pair e1 e2)) σ [] e2 σ [] | CaseLS e0 v0 e1 e2 σ : to_val e0 = Some v0 → - head_step (Case (InjL e0) e1 e2) σ (App e1 e0) σ [] + head_step (Case (InjL e0) e1 e2) σ [] (App e1 e0) σ [] | CaseRS e0 v0 e1 e2 σ : to_val e0 = Some v0 → - head_step (Case (InjR e0) e1 e2) σ (App e2 e0) σ [] + head_step (Case (InjR e0) e1 e2) σ [] (App e2 e0) σ [] | ForkS e σ: - head_step (Fork e) σ (Lit LitUnit) σ [e] + head_step (Fork e) σ [] (Lit LitUnit) σ [e] | AllocS e v σ l : - to_val e = Some v → σ !! l = None → - head_step (Alloc e) σ (Lit $ LitLoc l) (<[l:=v]>σ) [] + to_val e = Some v → σ.(heap) !! l = None → + head_step (Alloc e) σ + [] + (Lit $ LitLoc l) (state_upd_heap <[l:=v]> σ) + [] | LoadS l v σ : - σ !! l = Some v → - head_step (Load (Lit $ LitLoc l)) σ (of_val v) σ [] + σ.(heap) !! l = Some v → + head_step (Load (Lit $ LitLoc l)) σ [] (of_val v) σ [] | StoreS l e v σ : - to_val e = Some v → is_Some (σ !! l) → - head_step (Store (Lit $ LitLoc l) e) σ (Lit LitUnit) (<[l:=v]>σ) [] + to_val e = Some v → is_Some (σ.(heap) !! l) → + head_step (Store (Lit $ LitLoc l) e) σ + [] + (Lit LitUnit) (state_upd_heap <[l:=v]> σ) + [] | CasFailS l e1 v1 e2 v2 vl σ : to_val e1 = Some v1 → to_val e2 = Some v2 → - σ !! l = Some vl → vl ≠v1 → + σ.(heap) !! l = Some vl → vl ≠v1 → vals_cas_compare_safe vl v1 → - head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool false) σ [] + head_step (CAS (Lit $ LitLoc l) e1 e2) σ [] (Lit $ LitBool false) σ [] | CasSucS l e1 v1 e2 v2 σ : to_val e1 = Some v1 → to_val e2 = Some v2 → - σ !! l = Some v1 → + σ.(heap) !! l = Some v1 → vals_cas_compare_safe v1 v1 → - head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) [] + head_step (CAS (Lit $ LitLoc l) e1 e2) σ + [] + (Lit $ LitBool true) (state_upd_heap <[l:=v2]> σ) + [] | FaaS l i1 e2 i2 σ : to_val e2 = Some (LitV (LitInt i2)) → - σ !! l = Some (LitV (LitInt i1)) → - head_step (FAA (Lit $ LitLoc l) e2) σ (Lit $ LitInt i1) (<[l:=LitV (LitInt (i1 + i2))]>σ) []. - + σ.(heap) !! l = Some (LitV (LitInt i1)) → + head_step (FAA (Lit $ LitLoc l) e2) σ + [] + (Lit $ LitInt i1) (state_upd_heap <[l:=LitV (LitInt (i1 + i2))]> σ) + [] + | NewProphS σ p : + p ∉ σ.(used_proph_id) → + head_step NewProph σ + [] + (Lit $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ∪) σ) + [] + | ResolveProphS e1 p e2 v σ : + to_val e1 = Some (LitV $ LitProphecy p) → + to_val e2 = Some v → + head_step (ResolveProph e1 e2) σ [(p, v)] (Lit LitUnit) σ []. (** Basic properties about the language *) Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki). @@ -477,11 +535,11 @@ Lemma fill_item_val Ki e : is_Some (to_val (fill_item Ki e)) → is_Some (to_val e). Proof. intros [v ?]. destruct Ki; simplify_option_eq; eauto. Qed. -Lemma val_head_stuck e1 σ1 e2 σ2 efs : head_step e1 σ1 e2 σ2 efs → to_val e1 = None. +Lemma val_head_stuck e1 σ1 κ e2 σ2 efs : head_step e1 σ1 κ e2 σ2 efs → to_val e1 = None. Proof. destruct 1; naive_solver. Qed. -Lemma head_ctx_step_val Ki e σ1 e2 σ2 efs : - head_step (fill_item Ki e) σ1 e2 σ2 efs → is_Some (to_val e). +Lemma head_ctx_step_val Ki e σ1 κ e2 σ2 efs : + head_step (fill_item Ki e) σ1 κ e2 σ2 efs → is_Some (to_val e). Proof. destruct Ki; inversion_clear 1; simplify_option_eq; by eauto. Qed. Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 : @@ -495,10 +553,16 @@ Proof. Qed. Lemma alloc_fresh e v σ : - let l := fresh (dom (gset loc) σ) in - to_val e = Some v → head_step (Alloc e) σ (Lit (LitLoc l)) (<[l:=v]>σ) []. + let l := fresh (dom (gset loc) σ.(heap)) in + to_val e = Some v → + head_step (Alloc e) σ [] (Lit (LitLoc l)) (state_upd_heap <[l:=v]> σ) []. Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset loc)), is_fresh. Qed. +Lemma new_proph_id_fresh σ : + let p := fresh σ.(used_proph_id) in + head_step NewProph σ [] (Lit $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ∪) σ) []. +Proof. constructor. apply is_fresh. Qed. + (* Misc *) Lemma to_val_rec f x e `{!Closed (f :b: x :b: []) e} : to_val (Rec f x e) = Some (RecV f x e). diff --git a/theories/heap_lang/lib/coin_flip.v b/theories/heap_lang/lib/coin_flip.v new file mode 100644 index 0000000000000000000000000000000000000000..65d05ea26037cb53c72016e9bb81ed0b90e55315 --- /dev/null +++ b/theories/heap_lang/lib/coin_flip.v @@ -0,0 +1,92 @@ +From iris.base_logic.lib Require Export invariants. +From iris.program_logic Require Export atomic. +From iris.proofmode Require Import tactics. +From iris.heap_lang Require Import proofmode notation par. +Set Default Proof Using "Type". + +(** Nondeterminism and Speculation: + Implementing "Late choice versus early choice" example from + Logical Relations for Fine-Grained Concurrency by Turon et al. (POPL'13) *) + +Definition rand: val := + λ: "_", + let: "y" := ref #false in + Fork ("y" <- #true) ;; + !"y". + +Definition earlyChoice: val := + λ: "x", + let: "r" := rand #() in + "x" <- #0 ;; + "r". + +Definition lateChoice: val := + λ: "x", + let: "p" := NewProph in + "x" <- #0 ;; + let: "r" := rand #() in + resolve_proph: "p" to: "r" ;; + "r". + +Section coinflip. + Context `{!heapG Σ}. + + Local Definition N := nroot .@ "coin". + + Lemma rand_spec : + {{{ True }}} rand #() {{{ (b : bool), RET #b; True }}}. + Proof. + iIntros (Φ) "_ HP". + wp_lam. wp_alloc l as "Hl". wp_lam. + iMod (inv_alloc N _ (∃ (b: bool), l ↦ #b)%I with "[Hl]") as "#Hinv"; first by eauto. + wp_apply wp_fork. + - iInv N as (b) ">Hl". wp_store. iModIntro. iSplitL; eauto. + - wp_lam. iInv N as (b) ">Hl". wp_load. iModIntro. iSplitL "Hl"; first by eauto. + iApply "HP". done. + Qed. + + Lemma earlyChoice_spec (x: loc) : + <<< x ↦ - >>> + earlyChoice #x + @ ⊤ + <<< ∃ (b: bool), x ↦ #0, RET #b >>>. + Proof. + iApply wp_atomic_intro. iIntros (Φ) "AU". wp_lam. + wp_apply rand_spec; first done. + iIntros (b) "_". wp_let. + wp_bind (_ <- _)%E. + iMod "AU" as "[Hl [_ Hclose]]". + iDestruct "Hl" as (v) "Hl". + wp_store. + iMod ("Hclose" with "[Hl]") as "HΦ"; first by eauto. + iModIntro. wp_seq. done. + Qed. + + Definition val_to_bool (v : option val) : bool := + match v with + | Some (LitV (LitBool b)) => b + | _ => true + end. + + Lemma lateChoice_spec (x: loc) : + <<< x ↦ - >>> + lateChoice #x + @ ⊤ + <<< ∃ (b: bool), x ↦ #0, RET #b >>>. + Proof. + iApply wp_atomic_intro. iIntros (Φ) "AU". wp_lam. + wp_apply wp_new_proph; first done. + iIntros (v p) "Hp". + wp_let. + wp_bind (_ <- _)%E. + iMod "AU" as "[Hl [_ Hclose]]". + iDestruct "Hl" as (v') "Hl". + wp_store. + iMod ("Hclose" $! (val_to_bool v) with "[Hl]") as "HΦ"; first by eauto. + iModIntro. wp_seq. wp_apply rand_spec; try done. + iIntros (b') "_". wp_let. + wp_apply (wp_resolve_proph with "Hp"). + iIntros (->). wp_seq. done. + Qed. + +End coinflip. diff --git a/theories/heap_lang/lifting.v b/theories/heap_lang/lifting.v index 8cfb6341945740e72c8afab9eda7416b4bff7ee8..b7805d0789605ab20537acb69aaf2055b6974943 100644 --- a/theories/heap_lang/lifting.v +++ b/theories/heap_lang/lifting.v @@ -1,7 +1,8 @@ +From iris.algebra Require Import auth gmap. From iris.base_logic Require Export gen_heap. From iris.program_logic Require Export weakestpre. From iris.program_logic Require Import ectx_lifting total_ectx_lifting. -From iris.heap_lang Require Export lang. +From iris.heap_lang Require Export lang proph_map. From iris.heap_lang Require Import tactics. From iris.proofmode Require Import tactics. From stdpp Require Import fin_maps. @@ -9,12 +10,14 @@ Set Default Proof Using "Type". Class heapG Σ := HeapG { heapG_invG : invG Σ; - heapG_gen_heapG :> gen_heapG loc val Σ + heapG_gen_heapG :> gen_heapG loc val Σ; + heapG_proph_mapG :> proph_mapG proph_id val Σ }. Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := { iris_invG := heapG_invG; - state_interp := gen_heap_ctx + state_interp σ κs := + (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I }. (** Override the notations so that scopes and coercions work out *) @@ -35,17 +38,22 @@ Ltac inv_head_step := repeat match goal with | _ => progress simplify_map_eq/= (* simplify memory stuff *) | H : to_val _ = Some _ |- _ => apply of_to_val in H - | H : head_step ?e _ _ _ _ |- _ => + | H : head_step ?e _ _ _ _ _ |- _ => try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable and can thus better be avoided. *) inversion H; subst; clear H end. Local Hint Extern 0 (atomic _ _) => solve_atomic. -Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _; simpl. +Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl. +Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl. -Local Hint Constructors head_step. -Local Hint Resolve alloc_fresh. +(* [simpl apply] is too stupid, so we need extern hints here. *) +Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor. +Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS. +Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS. +Local Hint Extern 0 (head_step (Alloc _) _ _ _ _ _) => apply alloc_fresh. +Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_id_fresh. Local Hint Resolve to_of_val. Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto. @@ -110,14 +118,15 @@ Lemma wp_fork s E e Φ : â–· WP e @ s; ⊤ {{ _, True }} -∗ â–· Φ (LitV LitUnit) -∗ WP Fork e @ s; E {{ Φ }}. Proof. iIntros "He HΦ". - iApply wp_lift_pure_det_head_step; [auto|intros; inv_head_step; eauto|]. + iApply wp_lift_pure_det_head_step; [by eauto|intros; inv_head_step; by eauto|]. iModIntro; iNext; iIntros "!> /= {$He}". by iApply wp_value. Qed. + Lemma twp_fork s E e Φ : WP e @ s; ⊤ [{ _, True }] -∗ Φ (LitV LitUnit) -∗ WP Fork e @ s; E [{ Φ }]. Proof. iIntros "He HΦ". - iApply twp_lift_pure_det_head_step; [auto|intros; inv_head_step; eauto|]. + iApply twp_lift_pure_det_head_step; [eauto|intros; inv_head_step; eauto|]. iIntros "!> /= {$He}". by iApply twp_value. Qed. @@ -127,7 +136,7 @@ Lemma wp_alloc s E e v : {{{ True }}} Alloc e @ s; E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. Proof. iIntros (<- Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>"; iSplit; first by auto. + iIntros (σ1 κ κs) "[Hσ Hκs] !>"; iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". @@ -137,29 +146,27 @@ Lemma twp_alloc s E e v : [[{ True }]] Alloc e @ s; E [[{ l, RET LitV (LitLoc l); l ↦ v }]]. Proof. iIntros (<- Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>"; iSplit; first by auto. - iIntros (v2 σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "[Hσ Hκs] !>"; iSplit; first by eauto. + iIntros (κ v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. - iModIntro; iSplit=> //. iFrame. by iApply "HΦ". + iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_load s E l q v : {{{ â–· l ↦{q} v }}} Load (Lit (LitLoc l)) @ s; E {{{ RET v; l ↦{q} v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. + iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_load s E l q v : [[{ l ↦{q} v }]] Load (Lit (LitLoc l)) @ s; E [[{ RET v; l ↦{q} v }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. - iIntros (v2 σ2 efs Hstep); inv_head_step. - iModIntro; iSplit=> //. iFrame. by iApply "HΦ". + iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. + iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_store s E l v' e v : @@ -168,10 +175,10 @@ Lemma wp_store s E l v' e v : Proof. iIntros (<- Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". - iModIntro. iSplit=>//. by iApply "HΦ". + iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_store s E l v' e v : IntoVal e v → @@ -179,10 +186,10 @@ Lemma twp_store s E l v' e v : Proof. iIntros (<- Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iIntros (v2 σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". - iModIntro. iSplit=>//. by iApply "HΦ". + iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_fail s E l q v' e1 v1 e2 : @@ -192,7 +199,7 @@ Lemma wp_cas_fail s E l q v' e1 v1 e2 : Proof. iIntros (<- [v2 <-] ?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. @@ -203,9 +210,9 @@ Lemma twp_cas_fail s E l q v' e1 v1 e2 : Proof. iIntros (<- [v2 <-] ?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iIntros (v2' σ2 efs Hstep); inv_head_step. - iModIntro; iSplit=> //. iFrame. by iApply "HΦ". + iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. + iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_suc s E l e1 v1 e2 v2 : @@ -215,10 +222,10 @@ Lemma wp_cas_suc s E l e1 v1 e2 v2 : Proof. iIntros (<- <- ? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". - iModIntro. iSplit=>//. by iApply "HΦ". + iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_cas_suc s E l e1 v1 e2 v2 : IntoVal e1 v1 → IntoVal e2 v2 → vals_cas_compare_safe v1 v1 → @@ -227,10 +234,10 @@ Lemma twp_cas_suc s E l e1 v1 e2 v2 : Proof. iIntros (<- <- ? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iIntros (v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". - iModIntro. iSplit=>//. by iApply "HΦ". + iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_faa s E l i1 e2 i2 : @@ -240,10 +247,10 @@ Lemma wp_faa s E l i1 e2 i2 : Proof. iIntros (<- Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". - iModIntro. iSplit=>//. by iApply "HΦ". + iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_faa s E l i1 e2 i2 : IntoVal e2 (LitV (LitInt i2)) → @@ -252,9 +259,46 @@ Lemma twp_faa s E l i1 e2 i2 : Proof. iIntros (<- Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. - iSplit; first by eauto. iIntros (v2' σ2 efs Hstep); inv_head_step. + iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. + iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". - iModIntro. iSplit=>//. by iApply "HΦ". + iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. + +(** Lifting lemmas for creating and resolving prophecy variables *) +Lemma wp_new_proph : + {{{ True }}} NewProph {{{ v (p : proph_id), RET (LitV (LitProphecy p)); proph p v }}}. +Proof. + iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. + iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR". + iSplit; first by eauto. + iNext; iIntros (v2 σ2 efs Hstep). inv_head_step. + iMod (@proph_map_alloc with "HR") as "[HR Hp]". + { intro Hin. apply (iffLR (elem_of_subseteq _ _) Hdom) in Hin. done. } + iModIntro; iSplit=> //. iFrame. iSplitL "HR". + - iExists _. iSplit; last done. + iPureIntro. split. + + apply first_resolve_insert; auto. + + rewrite dom_insert_L. by apply union_mono_l. + - iApply "HΦ". done. +Qed. + +Lemma wp_resolve_proph e1 e2 p v w: + IntoVal e1 (LitV (LitProphecy p)) → + IntoVal e2 w → + {{{ proph p v }}} ResolveProph e1 e2 {{{ RET (LitV LitUnit); ⌜v = Some w⌠}}}. +Proof. + iIntros (<- <- Φ) "Hp HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. + iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR". + iDestruct (@proph_map_valid with "HR Hp") as %Hlookup. + iSplit; first by eauto. + iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iApply fupd_frame_l. + iSplit=> //. iFrame. + iMod (@proph_map_remove with "HR Hp") as "Hp". iModIntro. + iSplitR "HΦ". + - iExists _. iFrame. iPureIntro. split; first by eapply first_resolve_delete. + rewrite dom_delete. rewrite <- difference_empty_L. by eapply difference_mono. + - iApply "HΦ". iPureIntro. by eapply first_resolve_eq. +Qed. + End lifting. diff --git a/theories/heap_lang/notation.v b/theories/heap_lang/notation.v index 80e876e8caee6bd8935ef8a35487bae2f1b76c5c..01cec440238754c6f07e95142acf1e5485ec18a3 100644 --- a/theories/heap_lang/notation.v +++ b/theories/heap_lang/notation.v @@ -8,6 +8,7 @@ Delimit Scope val_scope with V. Coercion LitInt : Z >-> base_lit. Coercion LitBool : bool >-> base_lit. Coercion LitLoc : loc >-> base_lit. +Coercion LitProphecy : proph_id >-> base_lit. Coercion App : expr >-> Funclass. Coercion of_val : val >-> expr. @@ -155,3 +156,5 @@ Notation "'match:' e0 'with' 'NONE' => e1 | 'SOME' x => e2 'end'" := Notation "'match:' e0 'with' 'SOME' x => e2 | 'NONE' => e1 'end'" := (Match e0 BAnon e1 x%bind e2) (e0, e1, x, e2 at level 200, only parsing) : expr_scope. + +Notation "'resolve_proph:' p 'to:' v" := (ResolveProph p v) (at level 100) : expr_scope. diff --git a/theories/heap_lang/proph_map.v b/theories/heap_lang/proph_map.v new file mode 100644 index 0000000000000000000000000000000000000000..5f19f0c774c5d75678af3b1d1c42f8ae4ba4d048 --- /dev/null +++ b/theories/heap_lang/proph_map.v @@ -0,0 +1,177 @@ +From iris.algebra Require Import auth gmap. +From iris.base_logic.lib Require Export own. +From iris.proofmode Require Import tactics. +Set Default Proof Using "Type". +Import uPred. + +Definition proph_map (P V : Type) `{Countable P} := gmap P (option V). +Definition proph_val_list (P V : Type) := list (P * V). + +Definition proph_mapUR (P V : Type) `{Countable P} : ucmraT := + gmapUR P $ exclR $ optionC $ leibnizC V. + +Definition to_proph_map {P V} `{Countable P} (pvs : proph_map P V) : proph_mapUR P V := + fmap (λ v, Excl (v : option (leibnizC V))) pvs. + +(** The CMRA we need. *) +Class proph_mapG (P V : Type) (Σ : gFunctors) `{Countable P} := ProphMapG { + proph_map_inG :> inG Σ (authR (proph_mapUR P V)); + proph_map_name : gname +}. +Arguments proph_map_name {_ _ _ _ _} _ : assert. + +Class proph_mapPreG (P V : Type) (Σ : gFunctors) `{Countable P} := + { proph_map_preG_inG :> inG Σ (authR (proph_mapUR P V)) }. + +Definition proph_mapΣ (P V : Type) `{Countable P} : gFunctors := + #[GFunctor (authR (proph_mapUR P V))]. + +Instance subG_proph_mapPreG {Σ P V} `{Countable P} : + subG (proph_mapΣ P V) Σ → proph_mapPreG P V Σ. +Proof. solve_inG. Qed. + +Section definitions. + Context `{pG : proph_mapG P V Σ}. + + (** The first resolve for [p] in [pvs] *) + Definition first_resolve (pvs : proph_val_list P V) (p : P) := + (map_of_list pvs : gmap P V) !! p. + + Definition first_resolve_in_list (R : proph_map P V) pvs := + ∀ p v, p ∈ dom (gset _) R → + first_resolve pvs p = Some v → + R !! p = Some (Some v). + + Definition proph_map_auth (R : proph_map P V) : iProp Σ := + own (proph_map_name pG) (â— (to_proph_map R)). + + Definition proph_map_ctx (pvs : proph_val_list P V) (ps : gset P) : iProp Σ := + (∃ R, ⌜first_resolve_in_list R pvs ∧ + dom (gset _) R ⊆ ps⌠∗ + proph_map_auth R)%I. + + Definition proph_def (p : P) (v: option V) : iProp Σ := + own (proph_map_name pG) (â—¯ {[ p := Excl (v : option $ leibnizC V) ]}). + Definition proph_aux : seal (@proph_def). by eexists. Qed. + Definition proph := proph_aux.(unseal). + Definition proph_eq : + @proph = @proph_def := proph_aux.(seal_eq). + +End definitions. + +Section first_resolve. + Context {P V : Type} `{Countable P}. + Implicit Type pvs : proph_val_list P V. + Implicit Type p : P. + Implicit Type v : V. + Implicit Type R : proph_map P V. + + Lemma first_resolve_insert pvs p R : + first_resolve_in_list R pvs → + p ∉ dom (gset _) R → + first_resolve_in_list (<[p := first_resolve pvs p]> R) pvs. + Proof. + intros Hf Hnotin p' v' Hp'. rewrite (dom_insert_L R p) in Hp'. + erewrite elem_of_union in Hp'. destruct Hp' as [->%elem_of_singleton | Hin] => [->]. + - by rewrite lookup_insert. + - rewrite lookup_insert_ne; first auto. by intros ->. + Qed. + + Lemma first_resolve_delete pvs p v R : + first_resolve_in_list R ((p, v) :: pvs) → + first_resolve_in_list (delete p R) pvs. + Proof. + intros Hfr p' v' Hpin Heq. rewrite dom_delete_L in Hpin. rewrite /first_resolve in Heq. + apply elem_of_difference in Hpin as [Hpin Hne%not_elem_of_singleton]. + erewrite <- lookup_insert_ne in Heq; last done. rewrite lookup_delete_ne; eauto. + Qed. + + Lemma first_resolve_eq R p v w pvs : + first_resolve_in_list R ((p, v) :: pvs) → + R !! p = Some w → + w = Some v. + Proof. + intros Hfr Hlookup. specialize (Hfr p v (elem_of_dom_2 _ _ _ Hlookup)). + rewrite /first_resolve lookup_insert in Hfr. rewrite Hfr in Hlookup; last done. + inversion Hlookup. done. + Qed. + +End first_resolve. + +Section to_proph_map. + Context (P V : Type) `{Countable P}. + Implicit Types p : P. + Implicit Types R : proph_map P V. + + Lemma to_proph_map_valid R : ✓ to_proph_map R. + Proof. intros l. rewrite lookup_fmap. by case (R !! l). Qed. + + Lemma to_proph_map_insert p v R : + to_proph_map (<[p := v]> R) = <[p := Excl (v: option (leibnizC V))]> (to_proph_map R). + Proof. by rewrite /to_proph_map fmap_insert. Qed. + + Lemma to_proph_map_delete p R : + to_proph_map (delete p R) = delete p (to_proph_map R). + Proof. by rewrite /to_proph_map fmap_delete. Qed. + + Lemma lookup_to_proph_map_None R p : + R !! p = None → to_proph_map R !! p = None. + Proof. by rewrite /to_proph_map lookup_fmap=> ->. Qed. + + Lemma proph_map_singleton_included R p v : + {[p := Excl v]} ≼ to_proph_map R → R !! p = Some v. + Proof. + rewrite singleton_included=> -[v' []]. + rewrite /to_proph_map lookup_fmap fmap_Some_equiv=> -[v'' [Hp ->]]. + intros [=->]%Some_included_exclusive%leibniz_equiv_iff; first done; last done. + apply excl_exclusive. + Qed. +End to_proph_map. + + +Lemma proph_map_init `{proph_mapPreG P V PVS} pvs ps : + (|==> ∃ _ : proph_mapG P V PVS, proph_map_ctx pvs ps)%I. +Proof. + iMod (own_alloc (â— to_proph_map ∅)) as (γ) "Hh". + { apply: auth_auth_valid. exact: to_proph_map_valid. } + iModIntro. iExists (ProphMapG P V PVS _ _ _ γ), ∅. iSplit; last by iFrame. + iPureIntro. split =>//. +Qed. + +Section proph_map. + Context `{proph_mapG P V Σ}. + Implicit Types p : P. + Implicit Types v : option V. + Implicit Types R : proph_map P V. + + (** General properties of mapsto *) + Global Instance proph_timeless p v : Timeless (proph p v). + Proof. rewrite proph_eq /proph_def. apply _. Qed. + + Lemma proph_map_alloc R p v : + p ∉ dom (gset _) R → + proph_map_auth R ==∗ proph_map_auth (<[p := v]> R) ∗ proph p v. + Proof. + iIntros (Hp) "HR". rewrite /proph_map_ctx proph_eq /proph_def. + iMod (own_update with "HR") as "[HR Hl]". + { eapply auth_update_alloc, + (alloc_singleton_local_update _ _ (Excl $ (v : option (leibnizC _))))=> //. + apply lookup_to_proph_map_None. apply (iffLR (not_elem_of_dom _ _) Hp). } + iModIntro. rewrite /proph_map_auth to_proph_map_insert. iFrame. + Qed. + + Lemma proph_map_remove R p v : + proph_map_auth R -∗ proph p v ==∗ proph_map_auth (delete p R). + Proof. + iIntros "HR Hp". rewrite /proph_map_ctx proph_eq /proph_def. + rewrite /proph_map_auth to_proph_map_delete. iApply (own_update_2 with "HR Hp"). + apply auth_update_dealloc, (delete_singleton_local_update _ _ _). + Qed. + + Lemma proph_map_valid R p v : proph_map_auth R -∗ proph p v -∗ ⌜R !! p = Some vâŒ. + Proof. + iIntros "HR Hp". rewrite /proph_map_ctx proph_eq /proph_def. + iDestruct (own_valid_2 with "HR Hp") + as %[HH%proph_map_singleton_included _]%auth_valid_discrete_2; auto. + Qed. +End proph_map. diff --git a/theories/heap_lang/tactics.v b/theories/heap_lang/tactics.v index 31e5c3a366f103685fb7e8f1ce0d237694cefeaa..d0cca5401f823ae2782e46e5d2e42adf42eb9fbb 100644 --- a/theories/heap_lang/tactics.v +++ b/theories/heap_lang/tactics.v @@ -35,7 +35,9 @@ Inductive expr := | Load (e : expr) | Store (e1 : expr) (e2 : expr) | CAS (e0 : expr) (e1 : expr) (e2 : expr) - | FAA (e1 : expr) (e2 : expr). + | FAA (e1 : expr) (e2 : expr) + | NewProph + | ResolveProph (e1 : expr) (e2 : expr). Fixpoint to_expr (e : expr) : heap_lang.expr := match e with @@ -60,6 +62,8 @@ Fixpoint to_expr (e : expr) : heap_lang.expr := | Store e1 e2 => heap_lang.Store (to_expr e1) (to_expr e2) | CAS e0 e1 e2 => heap_lang.CAS (to_expr e0) (to_expr e1) (to_expr e2) | FAA e1 e2 => heap_lang.FAA (to_expr e1) (to_expr e2) + | NewProph => heap_lang.NewProph + | ResolveProph e1 e2 => heap_lang.ResolveProph (to_expr e1) (to_expr e2) end. Ltac of_expr e := @@ -94,6 +98,10 @@ Ltac of_expr e := constr:(CAS e0 e1 e2) | heap_lang.FAA ?e1 ?e2 => let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(FAA e1 e2) + | heap_lang.NewProph => + constr:(NewProph) + | heap_lang.ResolveProph ?e1 ?e2 => + let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(ResolveProph e1 e2) | to_expr ?e => e | of_val ?v => constr:(Val v (of_val v) (to_of_val v)) | language.of_val ?v => constr:(Val v (of_val v) (to_of_val v)) @@ -108,10 +116,10 @@ Fixpoint is_closed (X : list string) (e : expr) : bool := | Val _ _ _ | ClosedExpr _ => true | Var x => bool_decide (x ∈ X) | Rec f x e => is_closed (f :b: x :b: X) e - | Lit _ => true + | Lit _ | NewProph => true | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e => is_closed X e - | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 | FAA e1 e2 => + | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 | FAA e1 e2 | ResolveProph e1 e2 => is_closed X e1 && is_closed X e2 | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2 @@ -171,6 +179,8 @@ Fixpoint subst (x : string) (es : expr) (e : expr) : expr := | Store e1 e2 => Store (subst x es e1) (subst x es e2) | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2) | FAA e1 e2 => FAA (subst x es e1) (subst x es e2) + | NewProph => NewProph + | ResolveProph e1 e2 => ResolveProph (subst x es e1) (subst x es e2) end. Lemma to_expr_subst x er e : to_expr (subst x er e) = heap_lang.subst x (to_expr er) (to_expr e). @@ -190,6 +200,8 @@ Definition is_atomic (e : expr) := | Fork _ => true (* Make "skip" atomic *) | App (Rec _ _ (Lit _)) (Lit _) => true + | NewProph => true + | ResolveProph e1 e2 => bool_decide (is_Some (to_val e1) ∧ is_Some (to_val e2)) | _ => false end. Lemma is_atomic_correct s e : is_atomic e → Atomic s (to_expr e). @@ -293,4 +305,6 @@ Ltac reshape_expr e tac := | CAS ?e0 ?e1 ?e2 => go (CasRCtx e0 e1 :: K) e2 | FAA ?e1 ?e2 => reshape_val e2 ltac:(fun v2 => go (FaaLCtx v2 :: K) e1) | FAA ?e1 ?e2 => go (FaaRCtx e1 :: K) e2 + | ResolveProph ?e1 ?e2 => reshape_val e2 ltac:(fun v2 => go (ProphLCtx v2 :: K) e1) + | ResolveProph ?e1 ?e2 => go (ProphRCtx e1 :: K) e2 end in go (@nil ectx_item) e. diff --git a/theories/heap_lang/total_adequacy.v b/theories/heap_lang/total_adequacy.v index 55e7f5f5e41fbce3c9df3f0ed829461dc29c3d8c..9006687fa62732e3329ec44de369883f661cd564 100644 --- a/theories/heap_lang/total_adequacy.v +++ b/theories/heap_lang/total_adequacy.v @@ -6,10 +6,12 @@ Set Default Proof Using "Type". Definition heap_total Σ `{heapPreG Σ} s e σ φ : (∀ `{heapG Σ}, WP e @ s; ⊤ [{ v, ⌜φ v⌠}]%I) → - sn step ([e], σ). + sn erased_step ([e], σ). Proof. intros Hwp; eapply (twp_total _ _); iIntros (?) "". - iMod (gen_heap_init σ) as (?) "Hh". - iModIntro. iExists gen_heap_ctx; iFrame. - iApply (Hwp (HeapG _ _ _)). + iMod (gen_heap_init σ.(heap)) as (?) "Hh". + iMod (proph_map_init [] σ.(used_proph_id)) as (?) "Hp". + iModIntro. + iExists (λ σ κs, (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I). iFrame. + iApply (Hwp (HeapG _ _ _ _)). Qed. diff --git a/theories/program_logic/adequacy.v b/theories/program_logic/adequacy.v index b53adc80ddba7e251d7872084b5b45f54c40434d..095aa0c67cb599721eec4930d54569293979f379 100644 --- a/theories/program_logic/adequacy.v +++ b/theories/program_logic/adequacy.v @@ -37,26 +37,26 @@ Qed. Record adequate {Λ} (s : stuckness) (e1 : expr Λ) (σ1 : state Λ) (φ : val Λ → state Λ → Prop) := { adequate_result t2 σ2 v2 : - rtc step ([e1], σ1) (of_val v2 :: t2, σ2) → φ v2 σ2; + rtc erased_step ([e1], σ1) (of_val v2 :: t2, σ2) → φ v2 σ2; adequate_not_stuck t2 σ2 e2 : s = NotStuck → - rtc step ([e1], σ1) (t2, σ2) → + rtc erased_step ([e1], σ1) (t2, σ2) → e2 ∈ t2 → (is_Some (to_val e2) ∨ reducible e2 σ2) }. Theorem adequate_tp_safe {Λ} (e1 : expr Λ) t2 σ1 σ2 φ : adequate NotStuck e1 σ1 φ → - rtc step ([e1], σ1) (t2, σ2) → - Forall (λ e, is_Some (to_val e)) t2 ∨ ∃ t3 σ3, step (t2, σ2) (t3, σ3). + rtc erased_step ([e1], σ1) (t2, σ2) → + Forall (λ e, is_Some (to_val e)) t2 ∨ ∃ κ t3 σ3, step (t2, σ2) κ (t3, σ3). Proof. intros Had ?. destruct (decide (Forall (λ e, is_Some (to_val e)) t2)) as [|Ht2]; [by left|]. apply (not_Forall_Exists _), Exists_exists in Ht2; destruct Ht2 as (e2&?&He2). - destruct (adequate_not_stuck NotStuck e1 σ1 φ Had t2 σ2 e2) as [?|(e3&σ3&efs&?)]; + destruct (adequate_not_stuck NotStuck e1 σ1 φ Had t2 σ2 e2) as [?|(κ&e3&σ3&efs&?)]; rewrite ?eq_None_not_Some; auto. { exfalso. eauto. } destruct (elem_of_list_split t2 e2) as (t2'&t2''&->); auto. - right; exists (t2' ++ e3 :: t2'' ++ efs), σ3; econstructor; eauto. + right; exists κ, (t2' ++ e3 :: t2'' ++ efs), σ3; econstructor; eauto. Qed. Section adequacy. @@ -66,48 +66,50 @@ Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Implicit Types Φs : list (val Λ → iProp Σ). -Notation world' E σ := (wsat ∗ ownE E ∗ state_interp σ)%I (only parsing). -Notation world σ := (world' ⊤ σ) (only parsing). +Notation world' E σ κs := (wsat ∗ ownE E ∗ state_interp σ κs)%I (only parsing). +Notation world σ κs := (world' ⊤ σ κs) (only parsing). Notation wptp s t := ([∗ list] ef ∈ t, WP ef @ s; ⊤ {{ _, True }})%I. -Lemma wp_step s E e1 σ1 e2 σ2 efs Φ : - prim_step e1 σ1 e2 σ2 efs → - world' E σ1 ∗ WP e1 @ s; E {{ Φ }} - ==∗ â–· |==> â—‡ (world' E σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ wptp s efs). +Lemma wp_step s E e1 σ1 κ κs e2 σ2 efs Φ : + prim_step e1 σ1 κ e2 σ2 efs → + world' E σ1 (κ ++ κs) ∗ WP e1 @ s; E {{ Φ }} + ==∗ â–· |==> â—‡ (world' E σ2 κs ∗ WP e2 @ s; E {{ Φ }} ∗ wptp s efs). Proof. rewrite {1}wp_unfold /wp_pre. iIntros (?) "[(Hw & HE & Hσ) H]". - rewrite (val_stuck e1 σ1 e2 σ2 efs) // uPred_fupd_eq. + rewrite (val_stuck e1 σ1 κ e2 σ2 efs) // uPred_fupd_eq. iMod ("H" $! σ1 with "Hσ [Hw HE]") as ">(Hw & HE & _ & H)"; first by iFrame. iMod ("H" $! e2 σ2 efs with "[//] [$Hw $HE]") as ">(Hw & HE & H)". iIntros "!> !>". by iMod ("H" with "[$Hw $HE]") as ">($ & $ & $)". Qed. -Lemma wptp_step s e1 t1 t2 σ1 σ2 Φ : - step (e1 :: t1,σ1) (t2, σ2) → - world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 - ==∗ ∃ e2 t2', ⌜t2 = e2 :: t2'⌠∗ â–· |==> â—‡ (world σ2 ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). +Lemma wptp_step s e1 t1 t2 κ κs σ1 σ2 Φ : + step (e1 :: t1,σ1) κ (t2, σ2) → + world σ1 (κ ++ κs) ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 + ==∗ ∃ e2 t2', + ⌜t2 = e2 :: t2'⌠∗ â–· |==> â—‡ (world σ2 κs ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). Proof. iIntros (Hstep) "(HW & He & Ht)". destruct Hstep as [e1' σ1' e2' σ2' efs [|? t1'] t2' ?? Hstep]; simplify_eq/=. - - iExists e2', (t2' ++ efs); iSplitR; first eauto. + - iExists e2', (t2' ++ efs). iSplitR; first by eauto. iFrame "Ht". iApply wp_step; eauto with iFrame. - iExists e, (t1' ++ e2' :: t2' ++ efs); iSplitR; first eauto. iDestruct "Ht" as "($ & He' & $)". iFrame "He". iApply wp_step; eauto with iFrame. Qed. -Lemma wptp_steps s n e1 t1 t2 σ1 σ2 Φ : - nsteps step n (e1 :: t1, σ1) (t2, σ2) → - world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ +Lemma wptp_steps s n e1 t1 κs κs' t2 σ1 σ2 Φ : + nsteps n (e1 :: t1, σ1) κs (t2, σ2) → + world σ1 (κs ++ κs') ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ Nat.iter (S n) (λ P, |==> â–· P) (∃ e2 t2', - ⌜t2 = e2 :: t2'⌠∗ world σ2 ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). + ⌜t2 = e2 :: t2'⌠∗ world σ2 κs' ∗ WP e2 @ s; ⊤ {{ Φ }} ∗ wptp s t2'). Proof. - revert e1 t1 t2 σ1 σ2; simpl; induction n as [|n IH]=> e1 t1 t2 σ1 σ2 /=. + revert e1 t1 κs κs' t2 σ1 σ2; simpl; induction n as [|n IH]=> e1 t1 κs κs' t2 σ1 σ2 /=. { inversion_clear 1; iIntros "?"; eauto 10. } iIntros (Hsteps) "H". inversion_clear Hsteps as [|?? [t1' σ1']]. - iMod (wptp_step with "H") as (e1' t1'') "[% H]"; first eauto; simplify_eq. - iModIntro; iNext; iMod "H" as ">?". by iApply IH. + rewrite <- app_assoc. + iMod (wptp_step with "H") as (e1' t1'') "[% H]"; first by eauto; simplify_eq. + subst. iModIntro; iNext; iMod "H" as ">H". by iApply IH. Qed. Lemma bupd_iter_laterN_mono n P Q `{!Plain Q} : @@ -123,9 +125,11 @@ Proof. by rewrite bupd_frame_l {1}(later_intro R) -later_sep IH. Qed. -Lemma wptp_result s n e1 t1 v2 t2 σ1 σ2 φ : - nsteps step n (e1 :: t1, σ1) (of_val v2 :: t2, σ2) → - world σ1 ∗ WP e1 @ s; ⊤ {{ v, ∀ σ, state_interp σ ={⊤,∅}=∗ ⌜φ v σ⌠}} ∗ wptp s t1 +Lemma wptp_result s n e1 t1 κs κs' v2 t2 σ1 σ2 φ : + nsteps n (e1 :: t1, σ1) κs (of_val v2 :: t2, σ2) → + world σ1 (κs ++ κs') ∗ + WP e1 @ s; ⊤ {{ v, ∀ σ, state_interp σ κs' ={⊤,∅}=∗ ⌜φ v σ⌠}} ∗ + wptp s t1 ⊢ â–·^(S (S n)) ⌜φ v2 σ2âŒ. Proof. intros. rewrite wptp_steps // laterN_later. apply: bupd_iter_laterN_mono. @@ -135,19 +139,19 @@ Proof. iMod ("H" with "Hσ [$]") as ">(_ & _ & $)". Qed. -Lemma wp_safe E e σ Φ : - world' E σ -∗ WP e @ E {{ Φ }} ==∗ â–· ⌜is_Some (to_val e) ∨ reducible e σâŒ. +Lemma wp_safe E e σ κs Φ : + world' E σ κs -∗ WP e @ E {{ Φ }} ==∗ â–· ⌜is_Some (to_val e) ∨ reducible e σâŒ. Proof. rewrite wp_unfold /wp_pre. iIntros "(Hw&HE&Hσ) H". destruct (to_val e) as [v|] eqn:?. { iIntros "!> !> !%". left. by exists v. } - rewrite uPred_fupd_eq. iMod ("H" with "Hσ [-]") as ">(?&?&%&?)"; first by iFrame. + rewrite uPred_fupd_eq. iMod ("H" $! _ [] with "Hσ [-]") as ">(?&?&%&?)"; first by iFrame. iIntros "!> !> !%". by right. Qed. -Lemma wptp_safe n e1 e2 t1 t2 σ1 σ2 Φ : - nsteps step n (e1 :: t1, σ1) (t2, σ2) → e2 ∈ t2 → - world σ1 ∗ WP e1 {{ Φ }} ∗ wptp NotStuck t1 +Lemma wptp_safe n e1 κs κs' e2 t1 t2 σ1 σ2 Φ : + nsteps n (e1 :: t1, σ1) κs (t2, σ2) → e2 ∈ t2 → + world σ1 (κs ++ κs') ∗ WP e1 {{ Φ }} ∗ wptp NotStuck t1 ⊢ â–·^(S (S n)) ⌜is_Some (to_val e2) ∨ reducible e2 σ2âŒ. Proof. intros ? He2. rewrite wptp_steps // laterN_later. apply: bupd_iter_laterN_mono. @@ -157,9 +161,9 @@ Proof. - iMod (wp_safe with "Hw [Htp]") as "$". by iApply (big_sepL_elem_of with "Htp"). Qed. -Lemma wptp_invariance s n e1 e2 t1 t2 σ1 σ2 φ Φ : - nsteps step n (e1 :: t1, σ1) (t2, σ2) → - (state_interp σ2 ={⊤,∅}=∗ ⌜φâŒ) ∗ world σ1 ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 +Lemma wptp_invariance s n e1 κs κs' e2 t1 t2 σ1 σ2 φ Φ : + nsteps n (e1 :: t1, σ1) κs (t2, σ2) → + (state_interp σ2 κs' ={⊤,∅}=∗ ⌜φâŒ) ∗ world σ1 (κs ++ κs') ∗ WP e1 @ s; ⊤ {{ Φ }} ∗ wptp s t1 ⊢ â–·^(S (S n)) ⌜φâŒ. Proof. intros ?. rewrite wptp_steps // bupd_iter_frame_l laterN_later. @@ -171,68 +175,70 @@ Qed. End adequacy. Theorem wp_strong_adequacy Σ Λ `{invPreG Σ} s e σ φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ ∗ WP e @ s; ⊤ {{ v, ∀ σ, stateI σ ={⊤,∅}=∗ ⌜φ v σ⌠}})%I) → + (∀ `{Hinv : invG Σ} κs, + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ κs ∗ WP e @ s; ⊤ {{ v, ∀ σ, stateI σ [] ={⊤,∅}=∗ ⌜φ v σ⌠}})%I) → adequate s e σ φ. Proof. intros Hwp; split. - - intros t2 σ2 v2 [n ?]%rtc_nsteps. + - intros t2 σ2 v2 [n [κs ?]]%erased_steps_nsteps. eapply (soundness (M:=iResUR Σ) _ (S (S n))). - iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _). + iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _ κs). rewrite {1}uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "[HI Hwp]". - iApply (@wptp_result _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. - - destruct s; last done. intros t2 σ2 e2 _ [n ?]%rtc_nsteps ?. + iApply (@wptp_result _ _ (IrisG _ _ _ Hinv Istate) _ _ _ _ _ []); first by eauto. + rewrite app_nil_r. eauto with iFrame. + - destruct s; last done. intros t2 σ2 e2 _ [n [κs ?]]%erased_steps_nsteps ?. eapply (soundness (M:=iResUR Σ) _ (S (S n))). - iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _). + iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _ κs). rewrite uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "[HI Hwp]". - iApply (@wptp_safe _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. + iApply (@wptp_safe _ _ (IrisG _ _ _ Hinv Istate) _ _ _ []); [by eauto..|]. + rewrite app_nil_r. eauto with iFrame. Qed. Theorem wp_adequacy Σ Λ `{invPreG Σ} s e σ φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ ∗ WP e @ s; ⊤ {{ v, ⌜φ v⌠}})%I) → + (∀ `{Hinv : invG Σ} κs, + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ κs ∗ WP e @ s; ⊤ {{ v, ⌜φ v⌠}})%I) → adequate s e σ (λ v _, φ v). Proof. - intros Hwp. apply (wp_strong_adequacy Σ _)=> Hinv. + intros Hwp. apply (wp_strong_adequacy Σ _)=> Hinv κs. iMod Hwp as (stateI) "[Hσ H]". iExists stateI. iIntros "{$Hσ} !>". iApply (wp_wand with "H"). iIntros (v ? σ') "_". iMod (fupd_intro_mask' ⊤ ∅) as "_"; auto. Qed. Theorem wp_invariance Σ Λ `{invPreG Σ} s e σ1 t2 σ2 φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ1 ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 ={⊤,∅}=∗ ⌜φâŒ))%I) → - rtc step ([e], σ1) (t2, σ2) → + (∀ `{Hinv : invG Σ} κs κs', + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ1 (κs ++ κs') ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 κs' ={⊤,∅}=∗ ⌜φâŒ))%I) → + rtc erased_step ([e], σ1) (t2, σ2) → φ. Proof. - intros Hwp [n ?]%rtc_nsteps. + intros Hwp [n [κs ?]]%erased_steps_nsteps. eapply (soundness (M:=iResUR Σ) _ (S (S n))). - iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _). + iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp _ κs []). rewrite {1}uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "(HIstate & Hwp & Hclose)". - iApply (@wptp_invariance _ _ (IrisG _ _ Hinv Istate)); eauto with iFrame. + iApply (@wptp_invariance _ _ (IrisG _ _ _ Hinv Istate)); eauto with iFrame. Qed. (* An equivalent version that does not require finding [fupd_intro_mask'], but can be confusing to use. *) Corollary wp_invariance' Σ Λ `{invPreG Σ} s e σ1 t2 σ2 φ : - (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ1 ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 -∗ ∃ E, |={⊤,E}=> ⌜φâŒ))%I) → - rtc step ([e], σ1) (t2, σ2) → + (∀ `{Hinv : invG Σ} κs κs', + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ1 κs ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 κs' -∗ ∃ E, |={⊤,E}=> ⌜φâŒ))%I) → + rtc erased_step ([e], σ1) (t2, σ2) → φ. Proof. intros Hwp. eapply wp_invariance; first done. - intros Hinv. iMod (Hwp Hinv) as (stateI) "(? & ? & Hφ)". + intros Hinv κs κs'. iMod (Hwp Hinv) as (stateI) "(? & ? & Hφ)". iModIntro. iExists stateI. iFrame. iIntros "Hσ". iDestruct ("Hφ" with "Hσ") as (E) ">Hφ". iMod (fupd_intro_mask') as "_"; last by iModIntro. solve_ndisj. diff --git a/theories/program_logic/ectx_language.v b/theories/program_logic/ectx_language.v index 7aee798202a9431586705b026e601d2e80de536f..c591c3a651bde6b9a09c0b8a4b36d4e6daf5a154 100644 --- a/theories/program_logic/ectx_language.v +++ b/theories/program_logic/ectx_language.v @@ -10,19 +10,19 @@ structure. Use the coercion [LanguageOfEctx] as defined in the bottom of this file for doing that. *) Section ectx_language_mixin. - Context {expr val ectx state : Type}. + Context {expr val ectx state observation : Type}. Context (of_val : val → expr). Context (to_val : expr → option val). Context (empty_ectx : ectx). Context (comp_ectx : ectx → ectx → ectx). Context (fill : ectx → expr → expr). - Context (head_step : expr → state → expr → state → list expr → Prop). + Context (head_step : expr → state → list observation → expr → state → list expr → Prop). Record EctxLanguageMixin := { mixin_to_of_val v : to_val (of_val v) = Some v; mixin_of_to_val e v : to_val e = Some v → of_val v = e; - mixin_val_head_stuck e1 σ1 e2 σ2 efs : - head_step e1 σ1 e2 σ2 efs → to_val e1 = None; + mixin_val_head_stuck e1 σ1 κ e2 σ2 efs : + head_step e1 σ1 κ e2 σ2 efs → to_val e1 = None; mixin_fill_empty e : fill empty_ectx e = e; mixin_fill_comp K1 K2 e : fill K1 (fill K2 e) = fill (comp_ectx K1 K2) e; @@ -35,10 +35,10 @@ Section ectx_language_mixin. mixin_ectx_positive K1 K2 : comp_ectx K1 K2 = empty_ectx → K1 = empty_ectx ∧ K2 = empty_ectx; - mixin_step_by_val K K' e1 e1' σ1 e2 σ2 efs : + mixin_step_by_val K K' e1 e1' σ1 κ e2 σ2 efs : fill K e1 = fill K' e1' → to_val e1 = None → - head_step e1' σ1 e2 σ2 efs → + head_step e1' σ1 κ e2 σ2 efs → ∃ K'', K' = comp_ectx K K''; }. End ectx_language_mixin. @@ -48,25 +48,26 @@ Structure ectxLanguage := EctxLanguage { val : Type; ectx : Type; state : Type; + observation : Type; of_val : val → expr; to_val : expr → option val; empty_ectx : ectx; comp_ectx : ectx → ectx → ectx; fill : ectx → expr → expr; - head_step : expr → state → expr → state → list expr → Prop; + head_step : expr → state → list observation → expr → state → list expr → Prop; ectx_language_mixin : EctxLanguageMixin of_val to_val empty_ectx comp_ectx fill head_step }. -Arguments EctxLanguage {_ _ _ _ _ _ _ _ _ _} _. +Arguments EctxLanguage {_ _ _ _ _ _ _ _ _ _ _} _. Arguments of_val {_} _%V. Arguments to_val {_} _%E. Arguments empty_ectx {_}. Arguments comp_ectx {_} _ _. Arguments fill {_} _ _%E. -Arguments head_step {_} _%E _ _%E _ _. +Arguments head_step {_} _%E _ _ _%E _ _. (* From an ectx_language, we can construct a language. *) Section ectx_language. @@ -76,7 +77,7 @@ Section ectx_language. Implicit Types K : ectx Λ. (* Only project stuff out of the mixin that is not also in language *) - Lemma val_head_stuck e1 σ1 e2 σ2 efs : head_step e1 σ1 e2 σ2 efs → to_val e1 = None. + Lemma val_head_stuck e1 σ1 κ e2 σ2 efs : head_step e1 σ1 κ e2 σ2 efs → to_val e1 = None. Proof. apply ectx_language_mixin. Qed. Lemma fill_empty e : fill empty_ectx e = e. Proof. apply ectx_language_mixin. Qed. @@ -89,17 +90,19 @@ Section ectx_language. Lemma ectx_positive K1 K2 : comp_ectx K1 K2 = empty_ectx → K1 = empty_ectx ∧ K2 = empty_ectx. Proof. apply ectx_language_mixin. Qed. - Lemma step_by_val K K' e1 e1' σ1 e2 σ2 efs : + Lemma step_by_val K K' e1 e1' σ1 κ e2 σ2 efs : fill K e1 = fill K' e1' → to_val e1 = None → - head_step e1' σ1 e2 σ2 efs → + head_step e1' σ1 κ e2 σ2 efs → ∃ K'', K' = comp_ectx K K''. Proof. apply ectx_language_mixin. Qed. Definition head_reducible (e : expr Λ) (σ : state Λ) := - ∃ e' σ' efs, head_step e σ e' σ' efs. + ∃ κ e' σ' efs, head_step e σ κ e' σ' efs. + Definition head_reducible_no_obs (e : expr Λ) (σ : state Λ) := + ∃ e' σ' efs, head_step e σ [] e' σ' efs. Definition head_irreducible (e : expr Λ) (σ : state Λ) := - ∀ e' σ' efs, ¬head_step e σ e' σ' efs. + ∀ κ e' σ' efs, ¬head_step e σ κ e' σ' efs. Definition head_stuck (e : expr Λ) (σ : state Λ) := to_val e = None ∧ head_irreducible e σ. @@ -108,14 +111,14 @@ Section ectx_language. Definition sub_redexes_are_values (e : expr Λ) := ∀ K e', e = fill K e' → to_val e' = None → K = empty_ectx. - Inductive prim_step (e1 : expr Λ) (σ1 : state Λ) + Inductive prim_step (e1 : expr Λ) (σ1 : state Λ) (κ : list (observation Λ)) (e2 : expr Λ) (σ2 : state Λ) (efs : list (expr Λ)) : Prop := Ectx_step K e1' e2' : e1 = fill K e1' → e2 = fill K e2' → - head_step e1' σ1 e2' σ2 efs → prim_step e1 σ1 e2 σ2 efs. + head_step e1' σ1 κ e2' σ2 efs → prim_step e1 σ1 κ e2 σ2 efs. - Lemma Ectx_step' K e1 σ1 e2 σ2 efs : - head_step e1 σ1 e2 σ2 efs → prim_step (fill K e1) σ1 (fill K e2) σ2 efs. + Lemma Ectx_step' K e1 σ1 κ e2 σ2 efs : + head_step e1 σ1 κ e2 σ2 efs → prim_step (fill K e1) σ1 κ (fill K e2) σ2 efs. Proof. econstructor; eauto. Qed. Definition ectx_lang_mixin : LanguageMixin of_val to_val prim_step. @@ -123,29 +126,34 @@ Section ectx_language. split. - apply ectx_language_mixin. - apply ectx_language_mixin. - - intros ????? [??? -> -> ?%val_head_stuck]. + - intros ?????? [??? -> -> ?%val_head_stuck]. apply eq_None_not_Some. by intros ?%fill_val%eq_None_not_Some. Qed. Canonical Structure ectx_lang : language := Language ectx_lang_mixin. Definition head_atomic (a : atomicity) (e : expr Λ) : Prop := - ∀ σ e' σ' efs, - head_step e σ e' σ' efs → + ∀ σ κ e' σ' efs, + head_step e σ κ e' σ' efs → if a is WeaklyAtomic then irreducible e' σ' else is_Some (to_val e'). (* Some lemmas about this language *) Lemma fill_not_val K e : to_val e = None → to_val (fill K e) = None. Proof. rewrite !eq_None_not_Some. eauto using fill_val. Qed. - Lemma head_prim_step e1 σ1 e2 σ2 efs : - head_step e1 σ1 e2 σ2 efs → prim_step e1 σ1 e2 σ2 efs. + Lemma head_prim_step e1 σ1 κ e2 σ2 efs : + head_step e1 σ1 κ e2 σ2 efs → prim_step e1 σ1 κ e2 σ2 efs. Proof. apply Ectx_step with empty_ectx; by rewrite ?fill_empty. Qed. + Lemma head_reducible_no_obs_reducible e σ : + head_reducible_no_obs e σ → head_reducible e σ. + Proof. intros (?&?&?&?). eexists. eauto. Qed. Lemma not_head_reducible e σ : ¬head_reducible e σ ↔ head_irreducible e σ. Proof. unfold head_reducible, head_irreducible. naive_solver. Qed. Lemma head_prim_reducible e σ : head_reducible e σ → reducible e σ. + Proof. intros (κ&e'&σ'&efs&?). eexists κ, e', σ', efs. by apply head_prim_step. Qed. + Lemma head_prim_reducible_no_obs e σ : head_reducible_no_obs e σ → reducible_no_obs e σ. Proof. intros (e'&σ'&efs&?). eexists e', σ', efs. by apply head_prim_step. Qed. Lemma head_prim_irreducible e σ : irreducible e σ → head_irreducible e σ. Proof. @@ -155,7 +163,7 @@ Section ectx_language. Lemma prim_head_reducible e σ : reducible e σ → sub_redexes_are_values e → head_reducible e σ. Proof. - intros (e'&σ'&efs&[K e1' e2' -> -> Hstep]) ?. + intros (κ&e'&σ'&efs&[K e1' e2' -> -> Hstep]) ?. assert (K = empty_ectx) as -> by eauto 10 using val_head_stuck. rewrite fill_empty /head_reducible; eauto. Qed. @@ -175,18 +183,18 @@ Section ectx_language. Lemma ectx_language_atomic a e : head_atomic a e → sub_redexes_are_values e → Atomic a e. Proof. - intros Hatomic_step Hatomic_fill σ e' σ' efs [K e1' e2' -> -> Hstep]. + intros Hatomic_step Hatomic_fill σ κ e' σ' efs [K e1' e2' -> -> Hstep]. assert (K = empty_ectx) as -> by eauto 10 using val_head_stuck. rewrite fill_empty. eapply Hatomic_step. by rewrite fill_empty. Qed. - Lemma head_reducible_prim_step e1 σ1 e2 σ2 efs : + Lemma head_reducible_prim_step e1 σ1 κ e2 σ2 efs : head_reducible e1 σ1 → - prim_step e1 σ1 e2 σ2 efs → - head_step e1 σ1 e2 σ2 efs. + prim_step e1 σ1 κ e2 σ2 efs → + head_step e1 σ1 κ e2 σ2 efs. Proof. - intros (e2''&σ2''&efs''&?) [K e1' e2' -> -> Hstep]. - destruct (step_by_val K empty_ectx e1' (fill K e1') σ1 e2'' σ2'' efs'') + intros (κ'&e2''&σ2''&efs''&?) [K e1' e2' -> -> Hstep]. + destruct (step_by_val K empty_ectx e1' (fill K e1') σ1 κ' e2'' σ2'' efs'') as [K' [-> _]%symmetry%ectx_positive]; eauto using fill_empty, fill_not_val, val_head_stuck. by rewrite !fill_empty. @@ -197,19 +205,19 @@ Section ectx_language. Proof. split; simpl. - eauto using fill_not_val. - - intros ????? [K' e1' e2' Heq1 Heq2 Hstep]. + - intros ?????? [K' e1' e2' Heq1 Heq2 Hstep]. by exists (comp_ectx K K') e1' e2'; rewrite ?Heq1 ?Heq2 ?fill_comp. - - intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep]. - destruct (step_by_val K K'' e1 e1'' σ1 e2'' σ2 efs) as [K' ->]; eauto. + - intros e1 σ1 κ e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep]. + destruct (step_by_val K K'' e1 e1'' σ1 κ e2'' σ2 efs) as [K' ->]; eauto. rewrite -fill_comp in Heq1; apply (inj (fill _)) in Heq1. exists (fill K' e2''); rewrite -fill_comp; split; auto. econstructor; eauto. Qed. Record pure_head_step (e1 e2 : expr Λ) := { - pure_head_step_safe σ1 : head_reducible e1 σ1; - pure_head_step_det σ1 e2' σ2 efs : - head_step e1 σ1 e2' σ2 efs → σ1 = σ2 ∧ e2 = e2' ∧ efs = [] + pure_head_step_safe σ1 : head_reducible_no_obs e1 σ1; + pure_head_step_det σ1 κ e2' σ2 efs : + head_step e1 σ1 κ e2' σ2 efs → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = [] }. Lemma pure_head_step_pure_step e1 e2 : pure_head_step e1 e2 → pure_step e1 e2. @@ -217,7 +225,7 @@ Section ectx_language. intros [Hp1 Hp2]. split. - intros σ. destruct (Hp1 σ) as (e2' & σ2 & efs & ?). eexists e2', σ2, efs. by apply head_prim_step. - - intros σ1 e2' σ2 efs ?%head_reducible_prim_step; eauto. + - intros σ1 κ e2' σ2 efs ?%head_reducible_prim_step; eauto using head_reducible_no_obs_reducible. Qed. Global Instance pure_exec_fill K φ n e1 e2 : @@ -237,6 +245,6 @@ work. Note that this trick no longer works when we switch to canonical projections because then the pattern match [let '...] will be desugared into projections. *) Definition LanguageOfEctx (Λ : ectxLanguage) : language := - let '@EctxLanguage E V C St of_val to_val empty comp fill head mix := Λ in - @Language E V St of_val to_val _ - (@ectx_lang_mixin (@EctxLanguage E V C St of_val to_val empty comp fill head mix)). + let '@EctxLanguage E V C St K of_val to_val empty comp fill head mix := Λ in + @Language E V St K of_val to_val _ + (@ectx_lang_mixin (@EctxLanguage E V C St K of_val to_val empty comp fill head mix)). diff --git a/theories/program_logic/ectx_lifting.v b/theories/program_logic/ectx_lifting.v index 419f8365e19ae3b506ec399a8096a4383624d5af..080d399471f27ba1ea659c3d11a2bd3b827b2ed2 100644 --- a/theories/program_logic/ectx_lifting.v +++ b/theories/program_logic/ectx_lifting.v @@ -16,51 +16,51 @@ Hint Resolve head_stuck_stuck. Lemma wp_lift_head_step_fupd {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E,∅}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={∅,∅,E}â–·=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ + state_interp σ2 κs ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "H". iApply wp_lift_step_fupd=>//. iIntros (σ1) "Hσ". + iIntros (?) "H". iApply wp_lift_step_fupd=>//. iIntros (σ1 κ κs) "Hσ". iMod ("H" with "Hσ") as "[% H]"; iModIntro. - iSplit; first by destruct s; eauto. iIntros (e2 σ2 efs) "%". + iSplit; first by destruct s; eauto. iIntros (e2 σ2 efs Hstep). iApply "H"; eauto. Qed. Lemma wp_lift_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E,∅}=∗ ⌜head_reducible e1 σ1⌠∗ - â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ + state_interp σ2 κs ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "H". iApply wp_lift_head_step_fupd; [done|]. iIntros (?) "?". + iIntros (?) "H". iApply wp_lift_head_step_fupd; [done|]. iIntros (???) "?". iMod ("H" with "[$]") as "[$ H]". iIntros "!>" (e2 σ2 efs ?) "!> !>". by iApply "H". Qed. Lemma wp_lift_head_stuck E Φ e : to_val e = None → sub_redexes_are_values e → - (∀ σ, state_interp σ ={E,∅}=∗ ⌜head_stuck e σâŒ) + (∀ σ κs, state_interp σ κs ={E,∅}=∗ ⌜head_stuck e σâŒ) ⊢ WP e @ E ?{{ Φ }}. Proof. iIntros (??) "H". iApply wp_lift_stuck; first done. - iIntros (σ) "Hσ". iMod ("H" with "Hσ") as "%". by auto. + iIntros (σ κs) "Hσ". iMod ("H" with "Hσ") as "%". by auto. Qed. Lemma wp_lift_pure_head_step {s E E' Φ} e1 : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2 σ2 efs, head_step e1 σ1 e2 σ2 efs → σ1 = σ2) → - (|={E,E'}â–·=> ∀ e2 efs σ, ⌜head_step e1 σ e2 σ efs⌠→ + (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = [] ∧ σ1 = σ2) → + (|={E,E'}â–·=> ∀ κ e2 efs σ, ⌜head_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (??) "H". iApply wp_lift_pure_step; [|by eauto|]. { by destruct s; auto. } iApply (step_fupd_wand with "H"); iIntros "H". - iIntros (????). iApply "H"; eauto. + iIntros (?????). iApply "H"; eauto. Qed. Lemma wp_lift_pure_head_stuck E Φ e : @@ -70,72 +70,73 @@ Lemma wp_lift_pure_head_stuck E Φ e : WP e @ E ?{{ Φ }}%I. Proof using Hinh. iIntros (?? Hstuck). iApply wp_lift_head_stuck; [done|done|]. - iIntros (σ) "_". iMod (fupd_intro_mask' E ∅) as "_"; first set_solver. + iIntros (σ κs) "_". iMod (fupd_intro_mask' E ∅) as "_"; first set_solver. by auto. Qed. Lemma wp_lift_atomic_head_step_fupd {s E1 E2 Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E1}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E1}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E1,E2}â–·=∗ - state_interp σ2 ∗ + ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ + state_interp σ2 κs ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step_fupd; [done|]. - iIntros (σ1) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. - iSplit; first by destruct s; auto. iIntros (e2 σ2 efs) "%". - iApply "H"; auto. + iIntros (σ1 κ κs) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. + iSplit; first by destruct s; auto. iIntros (e2 σ2 efs Hstep). + iApply "H"; eauto. Qed. Lemma wp_lift_atomic_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E}=∗ ⌜head_reducible e1 σ1⌠∗ - â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ + state_interp σ2 κs ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. - iSplit; first by destruct s; auto. iNext. iIntros (e2 σ2 efs) "%". - iApply "H"; auto. + iIntros (σ1 κ κs) "Hσ1". iMod ("H" with "Hσ1") as "[% H]"; iModIntro. + iSplit; first by destruct s; auto. iNext. iIntros (e2 σ2 efs Hstep). + iApply "H"; eauto. Qed. -Lemma wp_lift_atomic_head_step_no_fork_fupd {s E1 E2 Φ} e1 : +Lemma wp_lift_atomic__head_step_no_fork_fupd {s E1 E2 Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E1}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E1}=∗ ⌜head_reducible e1 σ1⌠∗ - ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E1,E2}â–·=∗ - ⌜efs = []⌠∗ state_interp σ2 ∗ from_option Φ False (to_val e2)) + ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ + ⌜efs = []⌠∗ state_interp σ2 κs ∗ from_option Φ False (to_val e2)) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_head_step_fupd; [done|]. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. - iIntros (v2 σ2 efs) "%". iMod ("H" $! v2 σ2 efs with "[# //]") as "H". + iIntros (σ1 κ κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. + iIntros (v2 σ2 efs Hstep). + iMod ("H" $! v2 σ2 efs with "[# //]") as "H". iIntros "!> !>". iMod "H" as "(% & $ & $)"; subst; auto. Qed. Lemma wp_lift_atomic_head_step_no_fork {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E}=∗ ⌜head_reducible e1 σ1⌠∗ - â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E}=∗ - ⌜efs = []⌠∗ state_interp σ2 ∗ from_option Φ False (to_val e2)) + â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ + ⌜efs = []⌠∗ state_interp σ2 κs ∗ from_option Φ False (to_val e2)) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_head_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. - iNext; iIntros (v2 σ2 efs) "%". - iMod ("H" $! v2 σ2 efs with "[# //]") as "(% & $ & $)"; subst; auto. + iIntros (σ1 κ κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. + iNext; iIntros (v2 σ2 efs Hstep). + iMod ("H" $! v2 σ2 efs with "[# //]") as "(% & $ & $)". subst; auto. Qed. Lemma wp_lift_pure_det_head_step {s E E' Φ} e1 e2 efs : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', - head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → + (∀ σ1 κ e2' σ2 efs', + head_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. @@ -146,8 +147,8 @@ Qed. Lemma wp_lift_pure_det_head_step_no_fork {s E E' Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', - head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + (∀ σ1 κ e2' σ2 efs', + head_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. intros. rewrite -(wp_lift_pure_det_step e1 e2 []) /= ?right_id; eauto. @@ -157,8 +158,8 @@ Qed. Lemma wp_lift_pure_det_head_step_no_fork' {s E Φ} e1 e2 : to_val e1 = None → (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', - head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + (∀ σ1 κ e2' σ2 efs', + head_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. intros. rewrite -[(WP e1 @ s; _ {{ _ }})%I]wp_lift_pure_det_head_step_no_fork //. diff --git a/theories/program_logic/ectxi_language.v b/theories/program_logic/ectxi_language.v index bd73dfc65c8b23534a1d6f6d551d08603850a561..603d216516f1f8c2bb60ae876a68106f656f33f7 100644 --- a/theories/program_logic/ectxi_language.v +++ b/theories/program_logic/ectxi_language.v @@ -27,16 +27,16 @@ Below you can find the relevant parts: *) Section ectxi_language_mixin. - Context {expr val ectx_item state : Type}. + Context {expr val ectx_item state observation : Type}. Context (of_val : val → expr). Context (to_val : expr → option val). Context (fill_item : ectx_item → expr → expr). - Context (head_step : expr → state → expr → state → list expr → Prop). + Context (head_step : expr → state → list observation → expr → state → list expr → Prop). Record EctxiLanguageMixin := { mixin_to_of_val v : to_val (of_val v) = Some v; mixin_of_to_val e v : to_val e = Some v → of_val v = e; - mixin_val_stuck e1 σ1 e2 σ2 efs : head_step e1 σ1 e2 σ2 efs → to_val e1 = None; + mixin_val_stuck e1 σ1 κ e2 σ2 efs : head_step e1 σ1 κ e2 σ2 efs → to_val e1 = None; mixin_fill_item_inj Ki : Inj (=) (=) (fill_item Ki); mixin_fill_item_val Ki e : is_Some (to_val (fill_item Ki e)) → is_Some (to_val e); @@ -44,8 +44,8 @@ Section ectxi_language_mixin. to_val e1 = None → to_val e2 = None → fill_item Ki1 e1 = fill_item Ki2 e2 → Ki1 = Ki2; - mixin_head_ctx_step_val Ki e σ1 e2 σ2 efs : - head_step (fill_item Ki e) σ1 e2 σ2 efs → is_Some (to_val e); + mixin_head_ctx_step_val Ki e σ1 κ e2 σ2 efs : + head_step (fill_item Ki e) σ1 κ e2 σ2 efs → is_Some (to_val e); }. End ectxi_language_mixin. @@ -54,21 +54,22 @@ Structure ectxiLanguage := EctxiLanguage { val : Type; ectx_item : Type; state : Type; + observation : Type; of_val : val → expr; to_val : expr → option val; fill_item : ectx_item → expr → expr; - head_step : expr → state → expr → state → list expr → Prop; + head_step : expr → state → list observation → expr → state → list expr → Prop; ectxi_language_mixin : EctxiLanguageMixin of_val to_val fill_item head_step }. -Arguments EctxiLanguage {_ _ _ _ _ _ _ _} _. +Arguments EctxiLanguage {_ _ _ _ _ _ _ _ _} _. Arguments of_val {_} _%V. Arguments to_val {_} _%E. Arguments fill_item {_} _ _%E. -Arguments head_step {_} _%E _ _%E _ _. +Arguments head_step {_} _%E _ _ _%E _ _. Section ectxi_language. Context {Λ : ectxiLanguage}. @@ -84,8 +85,8 @@ Section ectxi_language. to_val e1 = None → to_val e2 = None → fill_item Ki1 e1 = fill_item Ki2 e2 → Ki1 = Ki2. Proof. apply ectxi_language_mixin. Qed. - Lemma head_ctx_step_val Ki e σ1 e2 σ2 efs : - head_step (fill_item Ki e) σ1 e2 σ2 efs → is_Some (to_val e). + Lemma head_ctx_step_val Ki e σ1 κ e2 σ2 efs : + head_step (fill_item Ki e) σ1 κ e2 σ2 efs → is_Some (to_val e). Proof. apply ectxi_language_mixin. Qed. Definition fill (K : ectx) (e : expr Λ) : expr Λ := foldl (flip fill_item) e K. @@ -109,7 +110,7 @@ Section ectxi_language. - intros K; induction K as [|Ki K IH]; rewrite /Inj; naive_solver. - done. - by intros [] []. - - intros K K' e1 e1' σ1 e2 σ2 efs Hfill Hred Hstep; revert K' Hfill. + - intros K K' e1 κ e1' σ1 e2 σ2 efs Hfill Hred Hstep; revert K' Hfill. induction K as [|Ki K IH] using rev_ind=> /= K' Hfill; eauto using app_nil_r. destruct K' as [|Ki' K' _] using @rev_ind; simplify_eq/=. { rewrite fill_app in Hstep. apply head_ctx_step_val in Hstep. @@ -147,6 +148,6 @@ Coercion ectxi_lang_ectx : ectxiLanguage >-> ectxLanguage. Coercion ectxi_lang : ectxiLanguage >-> language. Definition EctxLanguageOfEctxi (Λ : ectxiLanguage) : ectxLanguage := - let '@EctxiLanguage E V C St of_val to_val fill head mix := Λ in - @EctxLanguage E V (list C) St of_val to_val _ _ _ _ - (@ectxi_lang_ectx_mixin (@EctxiLanguage E V C St of_val to_val fill head mix)). + let '@EctxiLanguage E V C St K of_val to_val fill head mix := Λ in + @EctxLanguage E V (list C) St K of_val to_val _ _ _ _ + (@ectxi_lang_ectx_mixin (@EctxiLanguage E V C St K of_val to_val fill head mix)). diff --git a/theories/program_logic/language.v b/theories/program_logic/language.v index 8c50057f499e9ad7089d442916fb0f8433208fdf..58b8cc5c7056106c7ba04879e4f97b23a3c2f9e5 100644 --- a/theories/program_logic/language.v +++ b/theories/program_logic/language.v @@ -2,15 +2,18 @@ From iris.algebra Require Export ofe. Set Default Proof Using "Type". Section language_mixin. - Context {expr val state : Type}. + Context {expr val state observation : Type}. Context (of_val : val → expr). Context (to_val : expr → option val). - Context (prim_step : expr → state → expr → state → list expr → Prop). + (** We annotate the reduction relation with observations [κ], which we will + use in the definition of weakest preconditions to predict future + observations and assert correctness of the predictions. *) + Context (prim_step : expr → state → list observation → expr → state → list expr → Prop). Record LanguageMixin := { mixin_to_of_val v : to_val (of_val v) = Some v; mixin_of_to_val e v : to_val e = Some v → of_val v = e; - mixin_val_stuck e σ e' σ' efs : prim_step e σ e' σ' efs → to_val e = None + mixin_val_stuck e σ κ e' σ' efs : prim_step e σ κ e' σ' efs → to_val e = None }. End language_mixin. @@ -18,9 +21,10 @@ Structure language := Language { expr : Type; val : Type; state : Type; + observation : Type; of_val : val → expr; to_val : expr → option val; - prim_step : expr → state → expr → state → list expr → Prop; + prim_step : expr → state → list observation → expr → state → list expr → Prop; language_mixin : LanguageMixin of_val to_val prim_step }. Delimit Scope expr_scope with E. @@ -28,10 +32,10 @@ Delimit Scope val_scope with V. Bind Scope expr_scope with expr. Bind Scope val_scope with val. -Arguments Language {_ _ _ _ _ _} _. +Arguments Language {_ _ _ _ _ _ _} _. Arguments of_val {_} _. Arguments to_val {_} _. -Arguments prim_step {_} _ _ _ _ _. +Arguments prim_step {_} _ _ _ _ _ _. Canonical Structure stateC Λ := leibnizC (state Λ). Canonical Structure valC Λ := leibnizC (val Λ). @@ -42,12 +46,12 @@ Definition cfg (Λ : language) := (list (expr Λ) * state Λ)%type. Class LanguageCtx {Λ : language} (K : expr Λ → expr Λ) := { fill_not_val e : to_val e = None → to_val (K e) = None; - fill_step e1 σ1 e2 σ2 efs : - prim_step e1 σ1 e2 σ2 efs → - prim_step (K e1) σ1 (K e2) σ2 efs; - fill_step_inv e1' σ1 e2 σ2 efs : - to_val e1' = None → prim_step (K e1') σ1 e2 σ2 efs → - ∃ e2', e2 = K e2' ∧ prim_step e1' σ1 e2' σ2 efs + fill_step e1 σ1 κ e2 σ2 efs : + prim_step e1 σ1 κ e2 σ2 efs → + prim_step (K e1) σ1 κ (K e2) σ2 efs; + fill_step_inv e1' σ1 κ e2 σ2 efs : + to_val e1' = None → prim_step (K e1') σ1 κ e2 σ2 efs → + ∃ e2', e2 = K e2' ∧ prim_step e1' σ1 κ e2' σ2 efs }. Instance language_ctx_id Λ : LanguageCtx (@id (expr Λ)). @@ -64,13 +68,16 @@ Section language. Proof. apply language_mixin. Qed. Lemma of_to_val e v : to_val e = Some v → of_val v = e. Proof. apply language_mixin. Qed. - Lemma val_stuck e σ e' σ' efs : prim_step e σ e' σ' efs → to_val e = None. + Lemma val_stuck e σ κ e' σ' efs : prim_step e σ κ e' σ' efs → to_val e = None. Proof. apply language_mixin. Qed. Definition reducible (e : expr Λ) (σ : state Λ) := - ∃ e' σ' efs, prim_step e σ e' σ' efs. + ∃ κ e' σ' efs, prim_step e σ κ e' σ' efs. + (* Total WP only permits reductions without observations *) + Definition reducible_no_obs (e : expr Λ) (σ : state Λ) := + ∃ e' σ' efs, prim_step e σ [] e' σ' efs. Definition irreducible (e : expr Λ) (σ : state Λ) := - ∀ e' σ' efs, ¬prim_step e σ e' σ' efs. + ∀ κ e' σ' efs, ¬prim_step e σ κ e' σ' efs. Definition stuck (e : expr Λ) (σ : state Λ) := to_val e = None ∧ irreducible e σ. @@ -86,16 +93,35 @@ Section language. in case `e` reduces to a stuck non-value, there is no proof that the invariants have been established again. *) Class Atomic (a : atomicity) (e : expr Λ) : Prop := - atomic σ e' σ' efs : - prim_step e σ e' σ' efs → + atomic σ e' κ σ' efs : + prim_step e σ κ e' σ' efs → if a is WeaklyAtomic then irreducible e' σ' else is_Some (to_val e'). - Inductive step (Ï1 Ï2 : cfg Λ) : Prop := + Inductive step (Ï1 : cfg Λ) (κ : list (observation Λ)) (Ï2 : cfg Λ) : Prop := | step_atomic e1 σ1 e2 σ2 efs t1 t2 : Ï1 = (t1 ++ e1 :: t2, σ1) → Ï2 = (t1 ++ e2 :: t2 ++ efs, σ2) → - prim_step e1 σ1 e2 σ2 efs → - step Ï1 Ï2. + prim_step e1 σ1 κ e2 σ2 efs → + step Ï1 κ Ï2. + Hint Constructors step. + + Inductive nsteps : nat → cfg Λ → list (observation Λ) → cfg Λ → Prop := + | nsteps_refl Ï : + nsteps 0 Ï [] Ï + | nsteps_l n Ï1 Ï2 Ï3 κ κs : + step Ï1 κ Ï2 → + nsteps n Ï2 κs Ï3 → + nsteps (S n) Ï1 (κ ++ κs) Ï3. + Hint Constructors nsteps. + + Definition erased_step (Ï1 Ï2 : cfg Λ) := ∃ κ, step Ï1 κ Ï2. + + Lemma erased_steps_nsteps Ï1 Ï2 : + rtc erased_step Ï1 Ï2 → + ∃ n κs, nsteps n Ï1 κs Ï2. + Proof. + induction 1; firstorder; eauto. (* FIXME: [naive_solver eauto] should be able to handle this *) + Qed. Lemma of_to_val_flip v e : of_val v = e → to_val e = Some v. Proof. intros <-. by rewrite to_of_val. Qed. @@ -103,9 +129,11 @@ Section language. Lemma not_reducible e σ : ¬reducible e σ ↔ irreducible e σ. Proof. unfold reducible, irreducible. naive_solver. Qed. Lemma reducible_not_val e σ : reducible e σ → to_val e = None. - Proof. intros (?&?&?&?); eauto using val_stuck. Qed. + Proof. intros (?&?&?&?&?); eauto using val_stuck. Qed. + Lemma reducible_no_obs_reducible e σ : reducible_no_obs e σ → reducible e σ. + Proof. intros (?&?&?&?); eexists; eauto. Qed. Lemma val_irreducible e σ : is_Some (to_val e) → irreducible e σ. - Proof. intros [??] ??? ?%val_stuck. by destruct (to_val e). Qed. + Proof. intros [??] ???? ?%val_stuck. by destruct (to_val e). Qed. Global Instance of_val_inj : Inj (=) (=) (@of_val Λ). Proof. by intros v v' Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed. @@ -116,15 +144,21 @@ Section language. Lemma reducible_fill `{LanguageCtx Λ K} e σ : to_val e = None → reducible (K e) σ → reducible e σ. Proof. - intros ? (e'&σ'&efs&Hstep); unfold reducible. + intros ? (e'&σ'&k&efs&Hstep); unfold reducible. + apply fill_step_inv in Hstep as (e2' & _ & Hstep); eauto. + Qed. + Lemma reducible_no_obs_fill `{LanguageCtx Λ K} e σ : + to_val e = None → reducible_no_obs (K e) σ → reducible_no_obs e σ. + Proof. + intros ? (e'&σ'&efs&Hstep); unfold reducible_no_obs. apply fill_step_inv in Hstep as (e2' & _ & Hstep); eauto. Qed. Lemma irreducible_fill `{LanguageCtx Λ K} e σ : to_val e = None → irreducible e σ → irreducible (K e) σ. Proof. rewrite -!not_reducible. naive_solver eauto using reducible_fill. Qed. - Lemma step_Permutation (t1 t1' t2 : list (expr Λ)) σ1 σ2 : - t1 ≡ₚ t1' → step (t1,σ1) (t2,σ2) → ∃ t2', t2 ≡ₚ t2' ∧ step (t1',σ1) (t2',σ2). + Lemma step_Permutation (t1 t1' t2 : list (expr Λ)) κ σ1 σ2 : + t1 ≡ₚ t1' → step (t1,σ1) κ (t2,σ2) → ∃ t2', t2 ≡ₚ t2' ∧ step (t1',σ1) κ (t2',σ2). Proof. intros Ht [e1 σ1' e2 σ2' efs tl tr ?? Hstep]; simplify_eq/=. move: Ht; rewrite -Permutation_middle (symmetry_iff (≡ₚ)). @@ -133,32 +167,39 @@ Section language. by rewrite -!Permutation_middle !assoc_L Ht. Qed. + Lemma erased_step_Permutation (t1 t1' t2 : list (expr Λ)) σ1 σ2 : + t1 ≡ₚ t1' → erased_step (t1,σ1) (t2,σ2) → ∃ t2', t2 ≡ₚ t2' ∧ erased_step (t1',σ1) (t2',σ2). + Proof. + intros Heq [? Hs]. pose proof (step_Permutation _ _ _ _ _ _ Heq Hs). firstorder. + (* FIXME: [naive_solver] should be able to handle this *) + Qed. + Record pure_step (e1 e2 : expr Λ) := { - pure_step_safe σ1 : reducible e1 σ1; - pure_step_det σ1 e2' σ2 efs : - prim_step e1 σ1 e2' σ2 efs → σ1 = σ2 ∧ e2 = e2' ∧ efs = [] + pure_step_safe σ1 : reducible_no_obs e1 σ1; + pure_step_det σ1 κ e2' σ2 efs : + prim_step e1 σ1 κ e2' σ2 efs → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = [] }. (* TODO: Exclude the case of [n=0], either here, or in [wp_pure] to avoid it succeeding when it did not actually do anything. *) Class PureExec (φ : Prop) (n : nat) (e1 e2 : expr Λ) := - pure_exec : φ → nsteps pure_step n e1 e2. + pure_exec : φ → relations.nsteps pure_step n e1 e2. Lemma pure_step_ctx K `{LanguageCtx Λ K} e1 e2 : pure_step e1 e2 → pure_step (K e1) (K e2). Proof. intros [Hred Hstep]. split. - - unfold reducible in *. naive_solver eauto using fill_step. - - intros σ1 e2' σ2 efs Hpstep. - destruct (fill_step_inv e1 σ1 e2' σ2 efs) as (e2'' & -> & ?); [|exact Hpstep|]. + - unfold reducible_no_obs in *. naive_solver eauto using fill_step. + - intros σ1 κ e2' σ2 efs Hpstep. + destruct (fill_step_inv e1 σ1 κ e2' σ2 efs) as (e2'' & -> & ?); [|exact Hpstep|]. + destruct (Hred σ1) as (? & ? & ? & ?); eauto using val_stuck. - + destruct (Hstep σ1 e2'' σ2 efs) as (-> & -> & ->); auto. + + edestruct (Hstep σ1 κ e2'' σ2 efs) as (? & -> & -> & ->); auto. Qed. Lemma pure_step_nsteps_ctx K `{LanguageCtx Λ K} n e1 e2 : - nsteps pure_step n e1 e2 → - nsteps pure_step n (K e1) (K e2). + relations.nsteps pure_step n e1 e2 → + relations.nsteps pure_step n (K e1) (K e2). Proof. induction 1; econstructor; eauto using pure_step_ctx. Qed. (* We do not make this an instance because it is awfully general. *) diff --git a/theories/program_logic/lifting.v b/theories/program_logic/lifting.v index 637b6258e4c44f8d3e44165b348131fd8d6d6747..1185a506fca4a1b23b6944e673daf9e442f9adaf 100644 --- a/theories/program_logic/lifting.v +++ b/theories/program_logic/lifting.v @@ -11,56 +11,59 @@ Implicit Types σ : state Λ. Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. +Hint Resolve reducible_no_obs_reducible. + Lemma wp_lift_step_fupd s E Φ e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={∅,∅,E}â–·=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ + state_interp σ2 κs ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1) "Hσ". - iMod ("H" with "Hσ") as "(%&H)". iModIntro. iSplit. by destruct s. done. + rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1 κ κs) "Hσ". + iMod ("H" with "Hσ") as "(%&H)". iModIntro. iSplit. by destruct s. + iIntros (????). iApply "H". eauto. Qed. Lemma wp_lift_stuck E Φ e : to_val e = None → - (∀ σ, state_interp σ ={E,∅}=∗ ⌜stuck e σâŒ) + (∀ σ κs, state_interp σ κs ={E,∅}=∗ ⌜stuck e σâŒ) ⊢ WP e @ E ?{{ Φ }}. Proof. - rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1) "Hσ". + rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1 κ κs) "Hσ". iMod ("H" with "Hσ") as %[? Hirr]. iModIntro. iSplit; first done. - iIntros (e2 σ2 efs) "% !> !>". by case: (Hirr e2 σ2 efs). + iIntros (e2 σ2 efs ?). by case: (Hirr κ e2 σ2 efs). Qed. (** Derived lifting lemmas. *) Lemma wp_lift_step s E Φ e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ + state_interp σ2 κs ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "H". iApply wp_lift_step_fupd; [done|]. iIntros (?) "Hσ". + iIntros (?) "H". iApply wp_lift_step_fupd; [done|]. iIntros (???) "Hσ". iMod ("H" with "Hσ") as "[$ H]". iIntros "!> * % !>". by iApply "H". Qed. Lemma wp_lift_pure_step `{Inhabited (state Λ)} s E E' Φ e1 : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs → σ1 = σ2) → - (|={E,E'}â–·=> ∀ e2 efs σ, ⌜prim_step e1 σ e2 σ efs⌠→ + (∀ κ σ1 e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = [] ∧ σ1 = σ2) → + (|={E,E'}â–·=> ∀ κ e2 efs σ, ⌜prim_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (Hsafe Hstep) "H". iApply wp_lift_step. { specialize (Hsafe inhabitant). destruct s; last done. by eapply reducible_not_val. } - iIntros (σ1) "Hσ". iMod "H". + iIntros (σ1 κ κs) "Hσ". iMod "H". iMod fupd_intro_mask' as "Hclose"; last iModIntro; first by set_solver. iSplit. { iPureIntro. destruct s; done. } - iNext. iIntros (e2 σ2 efs ?). - destruct (Hstep σ1 e2 σ2 efs); auto; subst. + iNext. iIntros (e2 σ2 efs Hstep'). + destruct (Hstep κ σ1 e2 σ2 efs); auto; subst; clear Hstep. iMod "Hclose" as "_". iFrame "Hσ". iMod "H". iApply "H"; auto. Qed. @@ -71,7 +74,7 @@ Proof. iIntros (Hstuck) "_". iApply wp_lift_stuck. - destruct(to_val e) as [v|] eqn:He; last done. rewrite -He. by case: (Hstuck inhabitant). - - iIntros (σ) "_". iMod (fupd_intro_mask' E ∅) as "_". + - iIntros (σ κs) "_". iMod (fupd_intro_mask' E ∅) as "_". by set_solver. by auto. Qed. @@ -79,14 +82,14 @@ Qed. use the generic lemmas here. *) Lemma wp_lift_atomic_step_fupd {s E1 E2 Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E1}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E1}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={E1,E2}â–·=∗ - state_interp σ2 ∗ + ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ + state_interp σ2 κs ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. - iIntros (?) "H". iApply (wp_lift_step_fupd s E1 _ e1)=>//; iIntros (σ1) "Hσ1". + iIntros (?) "H". iApply (wp_lift_step_fupd s E1 _ e1)=>//; iIntros (σ1 κ κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]". iMod (fupd_intro_mask' E1 ∅) as "Hclose"; first set_solver. iIntros "!>" (e2 σ2 efs ?). iMod "Hclose" as "_". @@ -99,28 +102,29 @@ Qed. Lemma wp_lift_atomic_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ + (∀ σ1 κ κs, state_interp σ1 (κ ++ κs) ={E}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ + state_interp σ2 κs ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step_fupd; [done|]. - iIntros (?) "?". iMod ("H" with "[$]") as "[$ H]". iIntros "!> * % !> !>". + iIntros (???) "?". iMod ("H" with "[$]") as "[$ H]". + iIntros "!> *". iIntros (Hstep) "!> !>". by iApply "H". Qed. Lemma wp_lift_pure_det_step `{Inhabited (state Λ)} {s E E' Φ} e1 e2 efs : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ + (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ (|={E,E'}â–·=> WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (? Hpuredet) "H". iApply (wp_lift_pure_step s E E'); try done. - { by intros; eapply Hpuredet. } + { by naive_solver. } iApply (step_fupd_wand with "H"); iIntros "H". - by iIntros (e' efs' σ (_&->&->)%Hpuredet). + by iIntros (κ e' efs' σ (->&_&->&->)%Hpuredet). Qed. Lemma wp_pure_step_fupd `{Inhabited (state Λ)} s E E' e1 e2 φ n Φ : diff --git a/theories/program_logic/ownp.v b/theories/program_logic/ownp.v index 59f471673c84e1a5b79df1b4ef50c096aa53e1cf..42455a4d165a3a93c063b0b2ee1df86fa065dadc 100644 --- a/theories/program_logic/ownp.v +++ b/theories/program_logic/ownp.v @@ -5,65 +5,86 @@ From iris.algebra Require Import auth. From iris.proofmode Require Import tactics classes. Set Default Proof Using "Type". -Class ownPG' (Λstate : Type) (Σ : gFunctors) := OwnPG { +Class ownPG' (Λstate Λobservation: Type) (Σ : gFunctors) := OwnPG { ownP_invG : invG Σ; - ownP_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))); - ownP_name : gname; + ownP_state_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))); + ownP_obs_inG :> inG Σ (authR (optionUR (exclR (leibnizC (list Λobservation))))); + ownP_state_name : gname; + ownP_obs_name : gname }. -Notation ownPG Λ Σ := (ownPG' (state Λ) Σ). +Notation ownPG Λ Σ := (ownPG' (state Λ) (observation Λ) Σ). -Instance ownPG_irisG `{ownPG' Λstate Σ} : irisG' Λstate Σ := { +Instance ownPG_irisG `{ownPG' Λstate Λobservation Σ} : irisG' Λstate Λobservation Σ := { iris_invG := ownP_invG; - state_interp σ := own ownP_name (â— (Excl' (σ:leibnizC Λstate))) + state_interp σ κs := (own ownP_state_name (â— (Excl' (σ:leibnizC Λstate))) ∗ + own ownP_obs_name (â— (Excl' (κs:leibnizC (list Λobservation)))))%I }. Global Opaque iris_invG. -Definition ownPΣ (Λstate : Type) : gFunctors := +Definition ownPΣ (Λstate Λobservation : Type) : gFunctors := #[invΣ; - GFunctor (authUR (optionUR (exclR (leibnizC Λstate))))]. + GFunctor (authR (optionUR (exclR (leibnizC Λstate)))); + GFunctor (authR (optionUR (exclR (leibnizC (list Λobservation)))))]. -Class ownPPreG' (Λstate : Type) (Σ : gFunctors) : Set := IrisPreG { +Class ownPPreG' (Λstate Λobservation : Type) (Σ : gFunctors) : Set := IrisPreG { ownPPre_invG :> invPreG Σ; - ownPPre_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))) + ownPPre_state_inG :> inG Σ (authR (optionUR (exclR (leibnizC Λstate)))); + ownPPre_obs_inG :> inG Σ (authR (optionUR (exclR (leibnizC (list Λobservation))))) }. -Notation ownPPreG Λ Σ := (ownPPreG' (state Λ) Σ). +Notation ownPPreG Λ Σ := (ownPPreG' (state Λ) (observation Λ) Σ). -Instance subG_ownPΣ {Λstate Σ} : subG (ownPΣ Λstate) Σ → ownPPreG' Λstate Σ. +Instance subG_ownPΣ {Λstate Λobservation Σ} : subG (ownPΣ Λstate Λobservation) Σ → ownPPreG' Λstate Λobservation Σ. Proof. solve_inG. Qed. (** Ownership *) -Definition ownP `{ownPG' Λstate Σ} (σ : Λstate) : iProp Σ := - own ownP_name (â—¯ (Excl' σ)). -Typeclasses Opaque ownP. -Instance: Params (@ownP) 3. +Definition ownP_state `{ownPG' Λstate Λobservation Σ} (σ : Λstate) : iProp Σ := + own ownP_state_name (â—¯ (Excl' (σ:leibnizC Λstate))). +Definition ownP_obs `{ownPG' Λstate Λobservation Σ} (κs: list Λobservation) : iProp Σ := + own ownP_obs_name (â—¯ (Excl' (κs:leibnizC (list Λobservation)))). + +Typeclasses Opaque ownP_state ownP_obs. +Instance: Params (@ownP_state) 3. +Instance: Params (@ownP_obs) 3. (* Adequacy *) Theorem ownP_adequacy Σ `{ownPPreG Λ Σ} s e σ φ : - (∀ `{ownPG Λ Σ}, ownP σ ⊢ WP e @ s; ⊤ {{ v, ⌜φ v⌠}}) → + (∀ `{ownPG Λ Σ} κs, ownP_state σ ∗ ownP_obs κs ⊢ WP e @ s; ⊤ {{ v, ⌜φ v⌠}}) → adequate s e σ (λ v _, φ v). Proof. intros Hwp. apply (wp_adequacy Σ _). - iIntros (?). iMod (own_alloc (â— (Excl' (σ : leibnizC _)) â‹… â—¯ (Excl' σ))) + iIntros (? κs). + iMod (own_alloc (â— (Excl' (σ : leibnizC _)) â‹… â—¯ (Excl' σ))) as (γσ) "[Hσ Hσf]"; first done. - iModIntro. iExists (λ σ, own γσ (â— (Excl' (σ:leibnizC _)))). iFrame "Hσ". - iApply (Hwp (OwnPG _ _ _ _ γσ)). by rewrite /ownP. + iMod (own_alloc (â— (Excl' (κs : leibnizC _)) â‹… â—¯ (Excl' κs))) + as (γκs) "[Hκs Hκsf]"; first done. + iModIntro. iExists (λ σ κs, + own γσ (â— (Excl' (σ:leibnizC _))) ∗ own γκs (â— (Excl' (κs:leibnizC _))))%I. + iFrame "Hσ Hκs". + iApply (Hwp (OwnPG _ _ _ _ _ _ γσ γκs)). rewrite /ownP_state /ownP_obs. iFrame. Qed. Theorem ownP_invariance Σ `{ownPPreG Λ Σ} s e σ1 t2 σ2 φ : - (∀ `{ownPG Λ Σ}, - ownP σ1 ={⊤}=∗ WP e @ s; ⊤ {{ _, True }} ∗ |={⊤,∅}=> ∃ σ', ownP σ' ∧ ⌜φ σ'âŒ) → - rtc step ([e], σ1) (t2, σ2) → + (∀ `{ownPG Λ Σ} κs, + ownP_state σ1 ∗ ownP_obs κs ={⊤}=∗ WP e @ s; ⊤ {{ _, True }} ∗ + |={⊤,∅}=> ∃ σ' κs', ownP_state σ' ∗ ownP_obs κs' ∧ ⌜φ σ'âŒ) → + rtc erased_step ([e], σ1) (t2, σ2) → φ σ2. Proof. intros Hwp Hsteps. eapply (wp_invariance Σ Λ s e σ1 t2 σ2 _)=> //. - iIntros (?). iMod (own_alloc (â— (Excl' (σ1 : leibnizC _)) â‹… â—¯ (Excl' σ1))) + iIntros (? κs κs'). + iMod (own_alloc (â— (Excl' (σ1 : leibnizC _)) â‹… â—¯ (Excl' σ1))) as (γσ) "[Hσ Hσf]"; first done. - iExists (λ σ, own γσ (â— (Excl' (σ:leibnizC _)))). iFrame "Hσ". - iMod (Hwp (OwnPG _ _ _ _ γσ) with "[Hσf]") as "[$ H]"; first by rewrite /ownP. - iIntros "!> Hσ". iMod "H" as (σ2') "[Hσf %]". rewrite/ownP. - iDestruct (own_valid_2 with "Hσ Hσf") - as %[->%Excl_included%leibniz_equiv _]%auth_valid_discrete_2; auto. + iMod (own_alloc (â— (Excl' (κs ++ κs' : leibnizC _)) â‹… â—¯ (Excl' (κs ++ κs')))) + as (γκs) "[Hκs Hκsf]"; first done. + iExists (λ σ κs', + own γσ (â— (Excl' (σ:leibnizC _))) ∗ own γκs (â— (Excl' (κs':leibnizC _))))%I. + iFrame "Hσ Hκs". + iMod (Hwp (OwnPG _ _ _ _ _ _ γσ γκs) with "[Hσf Hκsf]") as "[$ H]"; + first by rewrite /ownP_state /ownP_obs; iFrame. + iIntros "!> [Hσ Hκs]". iMod "H" as (σ2' κs'') "[Hσf [Hκsf %]]". rewrite/ownP_state /ownP_obs. + iDestruct (own_valid_2 with "Hσ Hσf") as %[Hp _]%auth_valid_discrete_2. + pose proof (Excl_included _ _ Hp) as Hp'. apply leibniz_equiv in Hp'. inversion Hp'; subst. auto. Qed. @@ -74,118 +95,139 @@ Section lifting. Implicit Types e : expr Λ. Implicit Types Φ : val Λ → iProp Σ. - Lemma ownP_eq σ1 σ2 : state_interp σ1 -∗ ownP σ2 -∗ ⌜σ1 = σ2âŒ. + Lemma ownP_eq σ1 σ2 κs1 κs2 : state_interp σ1 κs1 -∗ ownP_state σ2 -∗ ownP_obs κs2 -∗ ⌜σ1 = σ2 ∧ κs1 = κs2âŒ. Proof. - iIntros "Hσ1 Hσ2"; rewrite/ownP. - by iDestruct (own_valid_2 with "Hσ1 Hσ2") - as %[->%Excl_included%leibniz_equiv _]%auth_valid_discrete_2. + iIntros "[Hσ◠Hκsâ—] Hσ◯ Hκsâ—¯". rewrite /ownP_state /ownP_obs. + iDestruct (own_valid_2 with "Hσ◠Hσ◯") + as %[Hps _]%auth_valid_discrete_2. + iDestruct (own_valid_2 with "Hκsâ— Hκsâ—¯") + as %[Hpo _]%auth_valid_discrete_2. + pose proof (leibniz_equiv _ _ (Excl_included _ _ Hps)) as ->. + pose proof (leibniz_equiv _ _ (Excl_included _ _ Hpo)) as ->. + done. Qed. - Lemma ownP_twice σ1 σ2 : ownP σ1 ∗ ownP σ2 ⊢ False. - Proof. rewrite /ownP -own_op own_valid. by iIntros (?). Qed. - Global Instance ownP_timeless σ : Timeless (@ownP (state Λ) Σ _ σ). - Proof. rewrite /ownP; apply _. Qed. + Lemma ownP_state_twice σ1 σ2 : ownP_state σ1 ∗ ownP_state σ2 ⊢ False. + Proof. rewrite /ownP_state -own_op own_valid. by iIntros (?). Qed. + Lemma ownP_obs_twice κs1 κs2 : ownP_obs κs1 ∗ ownP_obs κs2 ⊢ False. + Proof. rewrite /ownP_obs -own_op own_valid. by iIntros (?). Qed. + Global Instance ownP_state_timeless σ : Timeless (@ownP_state (state Λ) (observation Λ) Σ _ σ). + Proof. rewrite /ownP_state; apply _. Qed. + Global Instance ownP_obs_timeless κs : Timeless (@ownP_obs (state Λ) (observation Λ) Σ _ κs). + Proof. rewrite /ownP_obs; apply _. Qed. Lemma ownP_lift_step s E Φ e1 : - (|={E,∅}=> ∃ σ1, ⌜if s is NotStuck then reducible e1 σ1 else to_val e1 = None⌠∗ â–· ownP σ1 ∗ - â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 + (|={E,∅}=> ∃ σ1 κs, ⌜if s is NotStuck then reducible e1 σ1 else to_val e1 = None⌠∗ + â–· ownP_state σ1 ∗ â–· ownP_obs κs ∗ + â–· ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ + ownP_state σ2 ∗ ownP_obs κs' ={∅,E}=∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros "H". destruct (to_val e1) as [v|] eqn:EQe1. - apply of_to_val in EQe1 as <-. iApply fupd_wp. - iMod "H" as (σ1) "[Hred _]"; iDestruct "Hred" as %Hred. + iMod "H" as (σ1 κs) "[Hred _]"; iDestruct "Hred" as %Hred. destruct s; last done. apply reducible_not_val in Hred. move: Hred; by rewrite to_of_val. - - iApply wp_lift_step; [done|]; iIntros (σ1) "Hσ". - iMod "H" as (σ1' ?) "[>Hσf H]". iDestruct (ownP_eq with "Hσ Hσf") as %->. + - iApply wp_lift_step; [done|]; iIntros (σ1 κ κs) "Hσκs". + iMod "H" as (σ1' κs' ?) "[>Hσf [>Hκsf H]]". + iDestruct (ownP_eq with "Hσκs Hσf Hκsf") as %[<- <-]. iModIntro; iSplit; [by destruct s|]; iNext; iIntros (e2 σ2 efs Hstep). - rewrite /ownP; iMod (own_update_2 with "Hσ Hσf") as "[Hσ Hσf]". - { by apply auth_update, option_local_update, - (exclusive_local_update _ (Excl σ2)). } - iFrame "Hσ". iApply ("H" with "[]"); eauto. + iDestruct "Hσκs" as "[Hσ Hκs]". + rewrite /ownP_state /ownP_obs. + iMod (own_update_2 with "Hσ Hσf") as "[Hσ Hσf]". + { apply auth_update. apply: option_local_update. + by apply: (exclusive_local_update _ (Excl σ2)). } + iMod (own_update_2 with "Hκs Hκsf") as "[Hκs Hκsf]". + { apply auth_update. apply: option_local_update. + by apply: (exclusive_local_update _ (Excl (κs:leibnizC _))). } + iFrame "Hσ Hκs". iApply ("H" with "[]"); eauto with iFrame. Qed. Lemma ownP_lift_stuck E Φ e : - (|={E,∅}=> ∃ σ, ⌜stuck e σ⌠∗ â–· ownP σ) + (|={E,∅}=> ∃ σ κs, ⌜stuck e σ⌠∗ â–· (ownP_state σ ∗ ownP_obs κs)) ⊢ WP e @ E ?{{ Φ }}. Proof. iIntros "H". destruct (to_val e) as [v|] eqn:EQe. - apply of_to_val in EQe as <-. iApply fupd_wp. - iMod "H" as (σ1) "[H _]". iDestruct "H" as %[Hnv _]. exfalso. + iMod "H" as (σ1 κs) "[H _]". iDestruct "H" as %[Hnv _]. exfalso. by rewrite to_of_val in Hnv. - - iApply wp_lift_stuck; [done|]. iIntros (σ1) "Hσ". - iMod "H" as (σ1') "(% & >Hσf)". - by iDestruct (ownP_eq with "Hσ Hσf") as %->. + - iApply wp_lift_stuck; [done|]. iIntros (σ1 κs) "Hσ". + iMod "H" as (σ1' κs') "(% & >[Hσf Hκsf])". + by iDestruct (ownP_eq with "Hσ Hσf Hκsf") as %[-> _]. Qed. Lemma ownP_lift_pure_step `{Inhabited (state Λ)} s E Φ e1 : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs → σ1 = σ2) → - (â–· ∀ e2 efs σ, ⌜prim_step e1 σ e2 σ efs⌠→ + (∀ σ1 κ e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = [] ∧ σ1 = σ2) → + (â–· ∀ κ e2 efs σ, ⌜prim_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (Hsafe Hstep) "H"; iApply wp_lift_step. { specialize (Hsafe inhabitant). destruct s; last done. by eapply reducible_not_val. } - iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. + iIntros (σ1 κ κs) "Hσ". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. iModIntro; iSplit; [by destruct s|]; iNext; iIntros (e2 σ2 efs ?). - destruct (Hstep σ1 e2 σ2 efs); auto; subst. + destruct (Hstep σ1 κ e2 σ2 efs); auto; subst. by iMod "Hclose"; iModIntro; iFrame; iApply "H". Qed. (** Derived lifting lemmas. *) - Lemma ownP_lift_atomic_step {s E Φ} e1 σ1 : + Lemma ownP_lift_atomic_step {s E Φ} e1 σ1 κs : (if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (â–· ownP σ1 ∗ â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 -∗ + (â–· (ownP_state σ1 ∗ ownP_obs κs) ∗ + â–· ∀ κ κs' e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ + ownP_state σ2 -∗ ownP_obs κs' -∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "[Hσ H]"; iApply ownP_lift_step. + iIntros (?) "[[Hσ Hκs] H]"; iApply ownP_lift_step. iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. - iModIntro; iExists σ1; iFrame; iSplit; first by destruct s. - iNext; iIntros (e2 σ2 efs) "% Hσ". - iDestruct ("H" $! e2 σ2 efs with "[] [Hσ]") as "[HΦ $]"; [by eauto..|]. + iModIntro; iExists σ1, κs; iFrame; iSplit; first by destruct s. + iNext; iIntros (κ κs' e2 σ2 efs [??]) "[Hσ Hκs]". + iDestruct ("H" $! κ κs' e2 σ2 efs with "[] [Hσ] [Hκs]") as "[HΦ $]"; [by eauto..|]. destruct (to_val e2) eqn:?; last by iExFalso. iMod "Hclose"; iApply wp_value; last done. by apply of_to_val. Qed. - Lemma ownP_lift_atomic_det_step {s E Φ e1} σ1 v2 σ2 efs : + Lemma ownP_lift_atomic_det_step {s E Φ e1} σ1 κ κs v2 σ2 efs : (if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ e2' σ2' efs', prim_step e1 σ1 e2' σ2' efs' → - σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → - â–· ownP σ1 ∗ â–· (ownP σ2 -∗ + (∀ κ' e2' σ2' efs', prim_step e1 σ1 κ' e2' σ2' efs' → + κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → + â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) ∗ â–· (ownP_state σ2 -∗ ownP_obs κs -∗ Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (? Hdet) "[Hσ1 Hσ2]"; iApply ownP_lift_atomic_step; try done. - iFrame; iNext; iIntros (e2' σ2' efs') "% Hσ2'". - edestruct Hdet as (->&Hval&->). done. by rewrite Hval; iApply "Hσ2". + iIntros (? Hdet) "[[Hσ1 Hκs] Hσ2]"; iApply ownP_lift_atomic_step; try done. + iFrame; iNext; iIntros (κ' κs' e2' σ2' efs' (? & Heq)) "Hσ2' Hκs'". + edestruct (Hdet κ') as (->&->&Hval&->); first done. rewrite Hval. apply app_inv_head in Heq as ->. + iApply ("Hσ2" with "Hσ2' Hκs'"). Qed. - Lemma ownP_lift_atomic_det_step_no_fork {s E e1} σ1 v2 σ2 : + Lemma ownP_lift_atomic_det_step_no_fork {s E e1} σ1 κ κs v2 σ2 : (if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ e2' σ2' efs', prim_step e1 σ1 e2' σ2' efs' → - σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → - {{{ â–· ownP σ1 }}} e1 @ s; E {{{ RET v2; ownP σ2 }}}. + (∀ κ' e2' σ2' efs', prim_step e1 σ1 κ' e2' σ2' efs' → + κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → + {{{ â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) }}} e1 @ s; E {{{ RET v2; ownP_state σ2 ∗ ownP_obs κs}}}. Proof. - intros. rewrite -(ownP_lift_atomic_det_step σ1 v2 σ2 []); [|done..]. - rewrite big_sepL_nil right_id. by apply bi.wand_intro_r. + intros. rewrite -(ownP_lift_atomic_det_step σ1 κ κs v2 σ2 []); [|done..]. + rewrite big_sepL_nil right_id. apply bi.wand_intro_r. iIntros "[Hs Hs']". + iSplitL "Hs"; first by iFrame. iModIntro. iIntros "Hσ2 Hκs". iApply "Hs'". iFrame. Qed. Lemma ownP_lift_pure_det_step `{Inhabited (state Λ)} {s E Φ} e1 e2 efs : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ + (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ â–· (WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤{{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (? Hpuredet) "?"; iApply ownP_lift_pure_step=>//. - by apply Hpuredet. by iNext; iIntros (e' efs' σ (_&->&->)%Hpuredet). + naive_solver. by iNext; iIntros (κ e' efs' σ (->&_&->&->)%Hpuredet). Qed. Lemma ownP_lift_pure_det_step_no_fork `{Inhabited (state Λ)} {s E Φ} e1 e2 : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → - (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof. intros. rewrite -(wp_lift_pure_det_step e1 e2 []) ?big_sepL_nil ?right_id; eauto. @@ -203,74 +245,77 @@ Section ectx_lifting. Hint Resolve head_stuck_stuck. Lemma ownP_lift_head_step s E Φ e1 : - (|={E,∅}=> ∃ σ1, ⌜head_reducible e1 σ1⌠∗ â–· ownP σ1 ∗ - â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 + (|={E,∅}=> ∃ σ1 κs, ⌜head_reducible e1 σ1⌠∗ â–· (ownP_state σ1 ∗ ownP_obs κs) ∗ + â–· ∀ κ κs' e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ + ownP_state σ2 -∗ ownP_obs κs' ={∅,E}=∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros "H". iApply ownP_lift_step. - iMod "H" as (σ1 ?) "[Hσ1 Hwp]". iModIntro. iExists σ1. iSplit. + iMod "H" as (σ1 κs ?) "[>[Hσ1 Hκs] Hwp]". iModIntro. iExists σ1, κs. iSplit. { destruct s; try by eauto using reducible_not_val. } - iFrame. iNext. iIntros (e2 σ2 efs) "% ?". - iApply ("Hwp" with "[]"); eauto. + iFrame. iNext. iIntros (κ κs' e2 σ2 efs [? ->]) "[Hσ2 Hκs']". + iApply ("Hwp" with "[] Hσ2"); eauto. Qed. Lemma ownP_lift_head_stuck E Φ e : sub_redexes_are_values e → - (|={E,∅}=> ∃ σ, ⌜head_stuck e σ⌠∗ â–· ownP σ) + (|={E,∅}=> ∃ σ κs, ⌜head_stuck e σ⌠∗ â–· (ownP_state σ ∗ ownP_obs κs)) ⊢ WP e @ E ?{{ Φ }}. Proof. - iIntros (?) "H". iApply ownP_lift_stuck. iMod "H" as (σ) "[% >Hσ]". - iExists σ. by auto. + iIntros (?) "H". iApply ownP_lift_stuck. iMod "H" as (σ κs) "[% >[Hσ Hκs]]". + iExists σ, κs. iModIntro. by auto with iFrame. Qed. Lemma ownP_lift_pure_head_step s E Φ e1 : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2 σ2 efs, head_step e1 σ1 e2 σ2 efs → σ1 = σ2) → - (â–· ∀ e2 efs σ, ⌜head_step e1 σ e2 σ efs⌠→ + (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = [] ∧ σ1 = σ2) → + (â–· ∀ κ e2 efs σ, ⌜head_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (??) "H". iApply ownP_lift_pure_step; eauto. { by destruct s; auto. } - iNext. iIntros (????). iApply "H"; eauto. + iNext. iIntros (?????). iApply "H"; eauto. Qed. - Lemma ownP_lift_atomic_head_step {s E Φ} e1 σ1 : + Lemma ownP_lift_atomic_head_step {s E Φ} e1 σ1 κs : head_reducible e1 σ1 → - â–· ownP σ1 ∗ â–· (∀ e2 σ2 efs, - ⌜head_step e1 σ1 e2 σ2 efs⌠-∗ ownP σ2 -∗ + â–· (ownP_state σ1 ∗ ownP_obs κs) ∗ â–· (∀ κ κs' e2 σ2 efs, + ⌜head_step e1 σ1 κ e2 σ2 efs ∧ κs = κ ++ κs'⌠-∗ ownP_state σ2 -∗ ownP_obs κs' -∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - iIntros (?) "[? H]". iApply ownP_lift_atomic_step; eauto. + iIntros (?) "[Hst H]". iApply ownP_lift_atomic_step; eauto. { by destruct s; eauto using reducible_not_val. } - iFrame. iNext. iIntros (???) "% ?". iApply ("H" with "[]"); eauto. + iSplitL "Hst"; first done. + iNext. iIntros (????? [? ->]) "Hσ ?". iApply ("H" with "[] Hσ"); eauto. Qed. - Lemma ownP_lift_atomic_det_head_step {s E Φ e1} σ1 v2 σ2 efs : + Lemma ownP_lift_atomic_det_head_step {s E Φ e1} σ1 κ κs v2 σ2 efs : head_reducible e1 σ1 → - (∀ e2' σ2' efs', head_step e1 σ1 e2' σ2' efs' → - σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → - â–· ownP σ1 ∗ â–· (ownP σ2 -∗ Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) + (∀ κ' e2' σ2' efs', head_step e1 σ1 κ' e2' σ2' efs' → + κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') → + â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) ∗ â–· (ownP_state σ2 -∗ ownP_obs κs -∗ + Φ v2 ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. - by destruct s; eauto 10 using ownP_lift_atomic_det_step, reducible_not_val. + intros Hr Hs. destruct s; apply ownP_lift_atomic_det_step; eauto using reducible_not_val. Qed. - Lemma ownP_lift_atomic_det_head_step_no_fork {s E e1} σ1 v2 σ2 : + Lemma ownP_lift_atomic_det_head_step_no_fork {s E e1} σ1 κ κs v2 σ2 : head_reducible e1 σ1 → - (∀ e2' σ2' efs', head_step e1 σ1 e2' σ2' efs' → - σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → - {{{ â–· ownP σ1 }}} e1 @ s; E {{{ RET v2; ownP σ2 }}}. + (∀ κ' e2' σ2' efs', head_step e1 σ1 κ' e2' σ2' efs' → + κ = κ' ∧ σ2 = σ2' ∧ to_val e2' = Some v2 ∧ [] = efs') → + {{{ â–· (ownP_state σ1 ∗ ownP_obs (κ ++ κs)) }}} e1 @ s; E {{{ RET v2; ownP_state σ2 ∗ ownP_obs κs }}}. Proof. - intros ???; apply ownP_lift_atomic_det_step_no_fork; eauto. + intros ???; apply ownP_lift_atomic_det_step_no_fork; last naive_solver. by destruct s; eauto using reducible_not_val. Qed. Lemma ownP_lift_pure_det_head_step {s E Φ} e1 e2 efs : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → + (∀ σ1 κ e2' σ2 efs', head_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → â–· (WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. @@ -280,7 +325,7 @@ Section ectx_lifting. Lemma ownP_lift_pure_det_head_step_no_fork {s E Φ} e1 e2 : (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + (∀ σ1 κ e2' σ2 efs', head_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → â–· WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof using Hinh. iIntros (??) "H". iApply ownP_lift_pure_det_step_no_fork; eauto. diff --git a/theories/program_logic/total_adequacy.v b/theories/program_logic/total_adequacy.v index ebb8c9b0c663541bd460479580ebf7258ea00eb6..186b282e457d7f1196e06ee072695c6b5a568043 100644 --- a/theories/program_logic/total_adequacy.v +++ b/theories/program_logic/total_adequacy.v @@ -12,15 +12,15 @@ Implicit Types e : expr Λ. Definition twptp_pre (twptp : list (expr Λ) → iProp Σ) (t1 : list (expr Λ)) : iProp Σ := - (∀ t2 σ1 σ2, ⌜step (t1,σ1) (t2,σ2)⌠-∗ - state_interp σ1 ={⊤}=∗ state_interp σ2 ∗ twptp t2)%I. + (∀ t2 σ1 κ κs σ2, ⌜step (t1,σ1) κ (t2,σ2)⌠-∗ + state_interp σ1 κs ={⊤}=∗ ⌜κ = []⌠∗ state_interp σ2 κs ∗ twptp t2)%I. Lemma twptp_pre_mono (twptp1 twptp2 : list (expr Λ) → iProp Σ) : (<pers> (∀ t, twptp1 t -∗ twptp2 t) → ∀ t, twptp_pre twptp1 t -∗ twptp_pre twptp2 t)%I. Proof. iIntros "#H"; iIntros (t) "Hwp". rewrite /twptp_pre. - iIntros (t2 σ1 σ2) "Hstep Hσ". iMod ("Hwp" with "[$] [$]") as "[$ ?]". + iIntros (t2 σ1 κ κs σ2) "Hstep Hσ". iMod ("Hwp" with "[$] [$]") as "[$ [$ ?]]". by iApply "H". Qed. @@ -50,9 +50,9 @@ Instance twptp_Permutation : Proper ((≡ₚ) ==> (⊢)) twptp. Proof. iIntros (t1 t1' Ht) "Ht1". iRevert (t1' Ht); iRevert (t1) "Ht1". iApply twptp_ind; iIntros "!#" (t1) "IH"; iIntros (t1' Ht). - rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 σ2 Hstep) "Hσ". - destruct (step_Permutation t1' t1 t2 σ1 σ2) as (t2'&?&?); try done. - iMod ("IH" $! t2' with "[% //] Hσ") as "[$ [IH _]]". by iApply "IH". + rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 κ κs σ2 Hstep) "Hσ". + destruct (step_Permutation t1' t1 t2 κ σ1 σ2) as (t2'&?&?); try done. + iMod ("IH" $! t2' with "[% //] Hσ") as "($ & $ & IH & _)". by iApply "IH". Qed. Lemma twptp_app t1 t2 : twptp t1 -∗ twptp t2 -∗ twptp (t1 ++ t2). @@ -61,21 +61,21 @@ Proof. iApply twptp_ind; iIntros "!#" (t1) "IH1". iIntros (t2) "H2". iRevert (t1) "IH1"; iRevert (t2) "H2". iApply twptp_ind; iIntros "!#" (t2) "IH2". iIntros (t1) "IH1". - rewrite twptp_unfold /twptp_pre. iIntros (t1'' σ1 σ2 Hstep) "Hσ1". + rewrite twptp_unfold /twptp_pre. iIntros (t1'' σ1 κ κs σ2 Hstep) "Hσ1". destruct Hstep as [e1 σ1' e2 σ2' efs' t1' t2' ?? Hstep]; simplify_eq/=. apply app_eq_inv in H as [(t&?&?)|(t&?&?)]; subst. - destruct t as [|e1' ?]; simplify_eq/=. - + iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]". + + iMod ("IH2" with "[%] Hσ1") as "($ & $ & IH2 & _)". { by eapply step_atomic with (t1:=[]). } iModIntro. rewrite -{2}(left_id_L [] (++) (e2 :: _)). iApply "IH2". by setoid_rewrite (right_id_L [] (++)). - + iMod ("IH1" with "[%] Hσ1") as "[$ [IH1 _]]"; first by econstructor. + + iMod ("IH1" with "[%] Hσ1") as "($ & $ & IH1 & _)"; first by econstructor. iAssert (twptp t2) with "[IH2]" as "Ht2". { rewrite twptp_unfold. iApply (twptp_pre_mono with "[] IH2"). iIntros "!# * [_ ?] //". } iModIntro. rewrite -assoc_L (comm _ t2) !cons_middle !assoc_L. by iApply "IH1". - - iMod ("IH2" with "[%] Hσ1") as "[$ [IH2 _]]"; first by econstructor. + - iMod ("IH2" with "[%] Hσ1") as "($ & $ & IH2 & _)"; first by econstructor. iModIntro. rewrite -assoc. by iApply "IH2". Qed. @@ -84,46 +84,47 @@ Proof. iIntros "He". remember (⊤ : coPset) as E eqn:HE. iRevert (HE). iRevert (e E Φ) "He". iApply twp_ind. iIntros "!#" (e E Φ); iIntros "IH" (->). - rewrite twptp_unfold /twptp_pre /twp_pre. iIntros (t1' σ1' σ2' Hstep) "Hσ1". + rewrite twptp_unfold /twptp_pre /twp_pre. iIntros (t1' σ1' κ κs σ2' Hstep) "Hσ1". destruct Hstep as [e1 σ1 e2 σ2 efs [|? t1] t2 ?? Hstep]; simplify_eq/=; try discriminate_list. destruct (to_val e1) as [v|] eqn:He1. { apply val_stuck in Hstep; naive_solver. } iMod ("IH" with "Hσ1") as "[_ IH]". - iMod ("IH" with "[% //]") as "[$ [[IH _] IHfork]]"; iModIntro. + iMod ("IH" with "[% //]") as "($ & $ & [IH _] & IHfork)"; iModIntro. iApply (twptp_app [_] with "[IH]"); first by iApply "IH". clear. iInduction efs as [|e efs] "IH"; simpl. - { rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 σ2 Hstep). + { rewrite twptp_unfold /twptp_pre. iIntros (t2 σ1 κ κs σ2 Hstep). destruct Hstep; simplify_eq/=; discriminate_list. } iDestruct "IHfork" as "[[IH' _] IHfork]". iApply (twptp_app [_] with "[IH']"); [by iApply "IH'"|by iApply "IH"]. Qed. -Notation world σ := (wsat ∗ ownE ⊤ ∗ state_interp σ)%I. +Notation world σ := (wsat ∗ ownE ⊤ ∗ state_interp σ [])%I. -Lemma twptp_total σ t : world σ -∗ twptp t -∗ â–· ⌜sn step (t, σ)âŒ. +Lemma twptp_total σ t : world σ -∗ twptp t -∗ â–· ⌜sn erased_step (t, σ)âŒ. Proof. iIntros "Hw Ht". iRevert (σ) "Hw". iRevert (t) "Ht". iApply twptp_ind; iIntros "!#" (t) "IH"; iIntros (σ) "(Hw&HE&Hσ)". - iApply (pure_mono _ _ (Acc_intro _)). iIntros ([t' σ'] Hstep). + iApply (pure_mono _ _ (Acc_intro _)). iIntros ([t' σ'] [κ Hstep]). rewrite /twptp_pre uPred_fupd_eq /uPred_fupd_def. - iMod ("IH" with "[% //] Hσ [$Hw $HE]") as ">(Hw & HE & Hσ & [IH _])". + iMod ("IH" with "[% //] Hσ [$Hw $HE]") as ">(Hw & HE & % & Hσ & [IH _])". iApply "IH". by iFrame. Qed. + End adequacy. Theorem twp_total Σ Λ `{invPreG Σ} s e σ Φ : (∀ `{Hinv : invG Σ}, - (|={⊤}=> ∃ stateI : state Λ → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv stateI in - stateI σ ∗ WP e @ s; ⊤ [{ Φ }])%I) → - sn step ([e], σ). (* i.e. ([e], σ) is strongly normalizing *) + (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) -> iProp Σ, + let _ : irisG Λ Σ := IrisG _ _ _ Hinv stateI in + stateI σ [] ∗ WP e @ s; ⊤ [{ Φ }])%I) → + sn erased_step ([e], σ). (* i.e. ([e], σ) is strongly normalizing *) Proof. intros Hwp. eapply (soundness (M:=iResUR Σ) _ 1); iIntros "/=". iMod wsat_alloc as (Hinv) "[Hw HE]". specialize (Hwp Hinv). rewrite uPred_fupd_eq in Hwp; iMod (Hwp with "[$Hw $HE]") as ">(Hw & HE & Hwp)". iDestruct "Hwp" as (Istate) "[HI Hwp]". - iApply (@twptp_total _ _ (IrisG _ _ Hinv Istate) with "[$Hw $HE $HI]"). - by iApply (@twp_twptp _ _ (IrisG _ _ Hinv Istate)). + iApply (@twptp_total _ _ (IrisG _ _ _ Hinv Istate) with "[$Hw $HE $HI]"). + by iApply (@twp_twptp _ _ (IrisG _ _ _ Hinv Istate)). Qed. diff --git a/theories/program_logic/total_ectx_lifting.v b/theories/program_logic/total_ectx_lifting.v index e5d1af45e6fc89383ef3199de3dda66078d0532e..5e774884896c003c777117f3618ccbe19613769f 100644 --- a/theories/program_logic/total_ectx_lifting.v +++ b/theories/program_logic/total_ectx_lifting.v @@ -10,74 +10,75 @@ Implicit Types P : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Implicit Types v : val Λ. Implicit Types e : expr Λ. -Hint Resolve head_prim_reducible head_reducible_prim_step. +Hint Resolve head_prim_reducible_no_obs head_reducible_prim_step head_reducible_no_obs_reducible. Lemma twp_lift_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ - ⌜head_reducible e1 σ1⌠∗ - ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ + ⌜head_reducible_no_obs e1 σ1⌠∗ + ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ + ⌜κ = []⌠∗ state_interp σ2 κs ∗ + WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. - iIntros (?) "H". iApply (twp_lift_step _ E)=>//. iIntros (σ1) "Hσ". + iIntros (?) "H". iApply (twp_lift_step _ E)=>//. iIntros (σ1 κs) "Hσ". iMod ("H" $! σ1 with "Hσ") as "[% H]"; iModIntro. - iSplit; [destruct s; auto|]. iIntros (e2 σ2 efs) "%". + iSplit; [destruct s; auto|]. iIntros (κ e2 σ2 efs Hstep). iApply "H". by eauto. Qed. Lemma twp_lift_pure_head_step {s E Φ} e1 : - (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2 σ2 efs, head_step e1 σ1 e2 σ2 efs → σ1 = σ2) → - (|={E}=> ∀ e2 efs σ, ⌜head_step e1 σ e2 σ efs⌠→ + (∀ σ1, head_reducible_no_obs e1 σ1) → + (∀ σ1 κ e2 σ2 efs, head_step e1 σ1 κ e2 σ2 efs → κ = [] ∧ σ1 = σ2) → + (|={E}=> ∀ κ e2 efs σ, ⌜head_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof using Hinh. iIntros (??) ">H". iApply twp_lift_pure_step; eauto. - iIntros "!>" (????). iApply "H"; eauto. + iIntros "!>" (?????). iApply "H"; eauto. Qed. Lemma twp_lift_atomic_head_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ - ⌜head_reducible e1 σ1⌠∗ - ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ + ⌜head_reducible_no_obs e1 σ1⌠∗ + ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ + ⌜κ = []⌠∗ state_interp σ2 κs ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (?) "H". iApply twp_lift_atomic_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[% H]"; iModIntro. - iSplit; first by destruct s; auto. iIntros (e2 σ2 efs) "%". iApply "H"; auto. + iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[% H]"; iModIntro. + iSplit; first by destruct s; auto. iIntros (κ e2 σ2 efs Hstep). iApply "H"; eauto. Qed. Lemma twp_lift_atomic_head_step_no_fork {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ - ⌜head_reducible e1 σ1⌠∗ - ∀ e2 σ2 efs, ⌜head_step e1 σ1 e2 σ2 efs⌠={E}=∗ - ⌜efs = []⌠∗ state_interp σ2 ∗ from_option Φ False (to_val e2)) + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ + ⌜head_reducible_no_obs e1 σ1⌠∗ + ∀ κ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ + ⌜κ = []⌠∗ ⌜efs = []⌠∗ state_interp σ2 κs ∗ from_option Φ False (to_val e2)) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (?) "H". iApply twp_lift_atomic_head_step; eauto. - iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. - iIntros (v2 σ2 efs) "%". - iMod ("H" $! v2 σ2 efs with "[# //]") as "(% & $ & $)"; subst; auto. + iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]"; iModIntro. + iIntros (κ v2 σ2 efs Hstep). + iMod ("H" with "[# //]") as "($ & % & $ & $)"; subst; auto. Qed. Lemma twp_lift_pure_det_head_step {s E Φ} e1 e2 efs : - (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', - head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → + (∀ σ1, head_reducible_no_obs e1 σ1) → + (∀ σ1 κ e2' σ2 efs', + head_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs') → (|={E}=> WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. -Proof using Hinh. eauto using twp_lift_pure_det_step. Qed. +Proof using Hinh. eauto 10 using twp_lift_pure_det_step. Qed. Lemma twp_lift_pure_det_head_step_no_fork {s E Φ} e1 e2 : to_val e1 = None → - (∀ σ1, head_reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', - head_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → + (∀ σ1, head_reducible_no_obs e1 σ1) → + (∀ σ1 κ e2' σ2 efs', + head_step e1 σ1 κ e2' σ2 efs' → κ = [] ∧ σ1 = σ2 ∧ e2 = e2' ∧ [] = efs') → WP e2 @ s; E [{ Φ }] ⊢ WP e1 @ s; E [{ Φ }]. Proof using Hinh. intros. rewrite -(twp_lift_pure_det_step e1 e2 []) /= ?right_id; eauto. diff --git a/theories/program_logic/total_lifting.v b/theories/program_logic/total_lifting.v index c5aaca8fe274da8ea86f474bf45d20300887cda1..dc6f8e3ecd6ecaabbc4d359b7001401b4f6197ea 100644 --- a/theories/program_logic/total_lifting.v +++ b/theories/program_logic/total_lifting.v @@ -13,59 +13,61 @@ Implicit Types Φ : val Λ → iProp Σ. Lemma twp_lift_step s E Φ e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E,∅}=∗ - ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) + (∀ σ1 κs, state_interp σ1 κs ={E,∅}=∗ + ⌜if s is NotStuck then reducible_no_obs e1 σ1 else True⌠∗ + ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ + ⌜κ = []⌠∗ state_interp σ2 κs ∗ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. by rewrite twp_unfold /twp_pre=> ->. Qed. (** Derived lifting lemmas. *) + Lemma twp_lift_pure_step `{Inhabited (state Λ)} s E Φ e1 : - (∀ σ1, reducible e1 σ1) → - (∀ σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs → σ1 = σ2) → - (|={E}=> ∀ e2 efs σ, ⌜prim_step e1 σ e2 σ efs⌠→ + (∀ σ1, reducible_no_obs e1 σ1) → + (∀ σ1 κ e2 σ2 efs, prim_step e1 σ1 κ e2 σ2 efs → κ = [] /\ σ1 = σ2) → + (|={E}=> ∀ κ e2 efs σ, ⌜prim_step e1 σ κ e2 σ efs⌠→ WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (Hsafe Hstep) "H". iApply twp_lift_step. - { eapply reducible_not_val, (Hsafe inhabitant). } - iIntros (σ1) "Hσ". iMod "H". + { eapply reducible_not_val, reducible_no_obs_reducible, (Hsafe inhabitant). } + iIntros (σ1 κs) "Hσ". iMod "H". iMod fupd_intro_mask' as "Hclose"; last iModIntro; first set_solver. - iSplit; [by destruct s|]; iIntros (e2 σ2 efs ?). - destruct (Hstep σ1 e2 σ2 efs); auto; subst. - iMod "Hclose" as "_". iFrame "Hσ". iApply "H"; auto. + iSplit; [by destruct s|]. iIntros (κ e2 σ2 efs Hstep'). + destruct (Hstep σ1 κ e2 σ2 efs); auto; subst. + iMod "Hclose" as "_". iModIntro. iSplit; first done. + iFrame "Hσ". iApply "H"; auto. Qed. (* Atomic steps don't need any mask-changing business here, one can use the generic lemmas here. *) Lemma twp_lift_atomic_step {s E Φ} e1 : to_val e1 = None → - (∀ σ1, state_interp σ1 ={E}=∗ - ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={E}=∗ - state_interp σ2 ∗ + (∀ σ1 κs, state_interp σ1 κs ={E}=∗ + ⌜if s is NotStuck then reducible_no_obs e1 σ1 else True⌠∗ + ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ + ⌜κ = []⌠∗ state_interp σ2 κs ∗ from_option Φ False (to_val e2) ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. - iIntros (?) "H". iApply (twp_lift_step _ E _ e1)=>//; iIntros (σ1) "Hσ1". + iIntros (?) "H". iApply (twp_lift_step _ E _ e1)=>//; iIntros (σ1 κs) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. - iIntros "!>" (e2 σ2 efs) "%". iMod "Hclose" as "_". - iMod ("H" $! e2 σ2 efs with "[#]") as "($ & HΦ & $)"; first by eauto. + iIntros "!>" (κ e2 σ2 efs) "%". iMod "Hclose" as "_". + iMod ("H" $! κ e2 σ2 efs with "[#]") as "($ & $ & HΦ & $)"; first by eauto. destruct (to_val e2) eqn:?; last by iExFalso. iApply twp_value; last done. by apply of_to_val. Qed. Lemma twp_lift_pure_det_step `{Inhabited (state Λ)} {s E Φ} e1 e2 efs : - (∀ σ1, reducible e1 σ1) → - (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ + (∀ σ1, reducible_no_obs e1 σ1) → + (∀ σ1 κ e2' σ2 efs', prim_step e1 σ1 κ e2' σ2 efs' → κ = [] /\ σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ (|={E}=> WP e2 @ s; E [{ Φ }] ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, True }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (? Hpuredet) ">H". iApply (twp_lift_pure_step _ E); try done. - { by intros; eapply Hpuredet. } - by iIntros "!>" (e' efs' σ (_&->&->)%Hpuredet). + { by naive_solver. } + by iIntros "!>" (κ e' efs' σ (->&_&->&->)%Hpuredet). Qed. Lemma twp_pure_step `{Inhabited (state Λ)} s E e1 e2 φ n Φ : @@ -78,4 +80,5 @@ Proof. iApply twp_lift_pure_det_step; [done|naive_solver|]. iModIntro. rewrite /= right_id. by iApply "IH". Qed. + End lifting. diff --git a/theories/program_logic/total_weakestpre.v b/theories/program_logic/total_weakestpre.v index 9e8cf93ef64db490eef628c30a2c05887a4ef101..aa53b6716e1768554a86cb7a6d301e9def1ada62 100644 --- a/theories/program_logic/total_weakestpre.v +++ b/theories/program_logic/total_weakestpre.v @@ -9,11 +9,11 @@ Definition twp_pre `{irisG Λ Σ} (s : stuckness) coPset → expr Λ → (val Λ → iProp Σ) → iProp Σ := λ E e1 Φ, match to_val e1 with | Some v => |={E}=> Φ v - | None => ∀ σ1, - state_interp σ1 ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={∅,E}=∗ - state_interp σ2 ∗ wp E e2 Φ ∗ - [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) + | None => ∀ σ1 κs, + state_interp σ1 κs ={E,∅}=∗ ⌜if s is NotStuck then reducible_no_obs e1 σ1 else True⌠∗ + ∀ κ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ + ⌜κ = []⌠∗ state_interp σ2 κs ∗ + wp E e2 Φ ∗ [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) end%I. Lemma twp_pre_mono `{irisG Λ Σ} s @@ -23,9 +23,10 @@ Lemma twp_pre_mono `{irisG Λ Σ} s Proof. iIntros "#H"; iIntros (E e1 Φ) "Hwp". rewrite /twp_pre. destruct (to_val e1) as [v|]; first done. - iIntros (σ1) "Hσ". iMod ("Hwp" with "Hσ") as "($ & Hwp)"; iModIntro. - iIntros (e2 σ2 efs) "Hstep". - iMod ("Hwp" with "Hstep") as "($ & Hwp & Hfork)"; iModIntro; iSplitL "Hwp". + iIntros (σ1 κs) "Hσ". iMod ("Hwp" with "Hσ") as "($ & Hwp)"; iModIntro. + iIntros (κ e2 σ2 efs) "Hstep". + iMod ("Hwp" with "Hstep") as "($ & $ & Hwp & Hfork)"; iModIntro. + iSplitL "Hwp". - by iApply "H". - iApply (@big_sepL_impl with "[$Hfork]"); iIntros "!#" (k e _) "Hwp". by iApply "H". @@ -44,7 +45,7 @@ Proof. iApply twp_pre_mono. iIntros "!#" (E e Φ). iApply ("H" $! (E,e,Φ)). - intros wp Hwp n [[E1 e1] Φ1] [[E2 e2] Φ2] [[?%leibniz_equiv ?%leibniz_equiv] ?]; simplify_eq/=. - rewrite /uncurry3 /twp_pre. do 16 (f_equiv || done). by apply Hwp, pair_ne. + rewrite /uncurry3 /twp_pre. do 22 (f_equiv || done). by apply pair_ne. Qed. Definition twp_def `{irisG Λ Σ} (s : stuckness) (E : coPset) @@ -105,10 +106,10 @@ Proof. iIntros "!#" (e E1 Φ) "IH"; iIntros (E2 Ψ HE) "HΦ". rewrite !twp_unfold /twp_pre. destruct (to_val e) as [v|] eqn:?. { iApply ("HΦ" with "[> -]"). by iApply (fupd_mask_mono E1 _). } - iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. + iIntros (σ1 κs) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. iMod ("IH" with "[$]") as "[% IH]". - iModIntro; iSplit; [by destruct s1, s2|]. iIntros (e2 σ2 efs Hstep). - iMod ("IH" with "[//]") as "($ & IH & IHefs)"; auto. + iModIntro; iSplit; [by destruct s1, s2|]. iIntros (κ e2 σ2 efs Hstep). + iMod ("IH" with "[//]") as "($ & $ & IH & IHefs)"; auto. iMod "Hclose" as "_"; iModIntro. iSplitR "IHefs". - iDestruct "IH" as "[IH _]". iApply ("IH" with "[//] HΦ"). - iApply (big_sepL_impl with "[$IHefs]"); iIntros "!#" (k ef _) "[IH _]". @@ -119,7 +120,7 @@ Lemma fupd_twp s E e Φ : (|={E}=> WP e @ s; E [{ Φ }]) -∗ WP e @ s; E [{ Φ Proof. rewrite twp_unfold /twp_pre. iIntros "H". destruct (to_val e) as [v|] eqn:?. { by iMod "H". } - iIntros (σ1) "Hσ1". iMod "H". by iApply "H". + iIntros (σ1 κs) "Hσ1". iMod "H". by iApply "H". Qed. Lemma twp_fupd s E e Φ : WP e @ s; E [{ v, |={E}=> Φ v }] -∗ WP e @ s; E [{ Φ }]. Proof. iIntros "H". iApply (twp_strong_mono with "H"); auto. Qed. @@ -130,15 +131,16 @@ Proof. iIntros "H". rewrite !twp_unfold /twp_pre /=. destruct (to_val e) as [v|] eqn:He. { by iDestruct "H" as ">>> $". } - iIntros (σ1) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". - iModIntro. iIntros (e2 σ2 efs Hstep). - iMod ("H" with "[//]") as "(Hphy & H & $)". destruct s. + iIntros (σ1 κs) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". + iModIntro. iIntros (κ e2 σ2 efs Hstep). + iMod ("H" with "[//]") as "(% & Hphy & H & $)". destruct s. - rewrite !twp_unfold /twp_pre. destruct (to_val e2) as [v2|] eqn:He2. + iDestruct "H" as ">> $". by iFrame. + iMod ("H" with "[$]") as "[H _]". iDestruct "H" as %(? & ? & ? & ?). - by edestruct (atomic _ _ _ _ Hstep). - - destruct (atomic _ _ _ _ Hstep) as [v <-%of_to_val]. - iMod (twp_value_inv' with "H") as ">H". iFrame "Hphy". by iApply twp_value'. + by edestruct (atomic _ _ _ _ _ Hstep). + - destruct (atomic _ _ _ _ _ Hstep) as [v <-%of_to_val]. + iMod (twp_value_inv' with "H") as ">H". iModIntro. iSplit; first done. + iFrame "Hphy". by iApply twp_value'. Qed. Lemma twp_bind K `{!LanguageCtx K} s E e Φ : @@ -152,12 +154,12 @@ Proof. rewrite /twp_pre. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. iApply fupd_twp. by iApply "HΦ". } rewrite twp_unfold /twp_pre fill_not_val //. - iIntros (σ1) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. - { iPureIntro. unfold reducible in *. + iIntros (σ1 κs) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. + { iPureIntro. unfold reducible_no_obs in *. destruct s; naive_solver eauto using fill_step. } - iIntros (e2 σ2 efs Hstep). - destruct (fill_step_inv e σ1 e2 σ2 efs) as (e2'&->&?); auto. - iMod ("IH" $! e2' σ2 efs with "[//]") as "($ & IH & IHfork)". + iIntros (κ e2 σ2 efs Hstep). + destruct (fill_step_inv e σ1 κ e2 σ2 efs) as (e2'&->&?); auto. + iMod ("IH" $! κ e2' σ2 efs with "[//]") as "($ & $ & IH & IHfork)". iModIntro; iSplitR "IHfork". - iDestruct "IH" as "[IH _]". by iApply "IH". - by setoid_rewrite and_elim_r. @@ -173,10 +175,10 @@ Proof. { iModIntro. apply of_to_val in He as <-. rewrite !twp_unfold. iApply (twp_pre_mono with "[] IH"). by iIntros "!#" (E e Φ') "[_ ?]". } rewrite /twp_pre fill_not_val //. - iIntros (σ1) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. - { destruct s; eauto using reducible_fill. } - iIntros (e2 σ2 efs Hstep). - iMod ("IH" $! (K e2) σ2 efs with "[]") as "($ & IH & IHfork)"; eauto using fill_step. + iIntros (σ1 κs) "Hσ". iMod ("IH" with "[$]") as "[% IH]". iModIntro; iSplit. + { destruct s; eauto using reducible_no_obs_fill. } + iIntros (κ e2 σ2 efs Hstep). + iMod ("IH" $! κ (K e2) σ2 efs with "[]") as "($ & $ & IH & IHfork)"; eauto using fill_step. iModIntro; iSplitR "IHfork". - iDestruct "IH" as "[IH _]". by iApply "IH". - by setoid_rewrite and_elim_r. @@ -186,8 +188,9 @@ Lemma twp_wp s E e Φ : WP e @ s; E [{ Φ }] -∗ WP e @ s; E {{ Φ }}. Proof. iIntros "H". iLöb as "IH" forall (E e Φ). rewrite wp_unfold twp_unfold /wp_pre /twp_pre. destruct (to_val e) as [v|]=>//. - iIntros (σ1) "Hσ". iMod ("H" with "Hσ") as "[$ H]". iIntros "!>". - iIntros (e2 σ2 efs) "Hstep". iMod ("H" with "Hstep") as "($ & H & Hfork)". + iIntros (σ1 κ κs) "Hσ". iMod ("H" with "Hσ") as "[% H]". iIntros "!>". iSplitR. + { destruct s; last done. eauto using reducible_no_obs_reducible. } + iIntros (e2 σ2 efs Hstep). iMod ("H" $! _ _ _ _ Hstep) as "(-> & $ & H & Hfork)". iApply step_fupd_intro; [set_solver+|]. iNext. iSplitL "H". by iApply "IH". iApply (@big_sepL_impl with "[$Hfork]"). iIntros "!#" (k e' _) "H". by iApply "IH". diff --git a/theories/program_logic/weakestpre.v b/theories/program_logic/weakestpre.v index 023966eb01f2494650a7a9d950d22c994434681b..bcaa16f4499b3f75b59e1f69e489241fe00f6128 100644 --- a/theories/program_logic/weakestpre.v +++ b/theories/program_logic/weakestpre.v @@ -5,11 +5,11 @@ From iris.proofmode Require Import base tactics classes. Set Default Proof Using "Type". Import uPred. -Class irisG' (Λstate : Type) (Σ : gFunctors) := IrisG { +Class irisG' (Λstate Λobservation : Type) (Σ : gFunctors) := IrisG { iris_invG :> invG Σ; - state_interp : Λstate → iProp Σ; + state_interp : Λstate → list Λobservation → iProp Σ; }. -Notation irisG Λ Σ := (irisG' (state Λ) Σ). +Notation irisG Λ Σ := (irisG' (state Λ) (observation Λ) Σ). Global Opaque iris_invG. Definition wp_pre `{irisG Λ Σ} (s : stuckness) @@ -17,11 +17,11 @@ Definition wp_pre `{irisG Λ Σ} (s : stuckness) coPset -c> expr Λ -c> (val Λ -c> iProp Σ) -c> iProp Σ := λ E e1 Φ, match to_val e1 with | Some v => |={E}=> Φ v - | None => ∀ σ1, - state_interp σ1 ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ - ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌠={∅,∅,E}â–·=∗ - state_interp σ2 ∗ wp E e2 Φ ∗ - [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) + | None => ∀ σ1 κ κs, + state_interp σ1 (κ ++ κs) ={E,∅}=∗ + ⌜if s is NotStuck then reducible e1 σ1 else True⌠∗ + ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ + state_interp σ2 κs ∗ wp E e2 Φ ∗ [∗ list] ef ∈ efs, wp ⊤ ef (λ _, True) end%I. Local Instance wp_pre_contractive `{irisG Λ Σ} s : Contractive (wp_pre s). @@ -57,7 +57,7 @@ Proof. (* FIXME: figure out a way to properly automate this proof *) (* FIXME: reflexivity, as being called many times by f_equiv and f_contractive is very slow here *) - do 18 (f_contractive || f_equiv). apply IH; first lia. + do 22 (f_contractive || f_equiv). apply IH; first lia. intros v. eapply dist_le; eauto with lia. Qed. Global Instance wp_proper s E e : @@ -79,7 +79,7 @@ Proof. rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:?. { iApply ("HΦ" with "[> -]"). by iApply (fupd_mask_mono E1 _). } - iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. + iIntros (σ1 κ κs) "Hσ". iMod (fupd_intro_mask' E2 E1) as "Hclose"; first done. iMod ("H" with "[$]") as "[% H]". iModIntro. iSplit; [by destruct s1, s2|]. iIntros (e2 σ2 efs Hstep). iMod ("H" with "[//]") as "H". iIntros "!> !>". iMod "H" as "($ & H & Hefs)". @@ -93,7 +93,7 @@ Lemma fupd_wp s E e Φ : (|={E}=> WP e @ s; E {{ Φ }}) ⊢ WP e @ s; E {{ Φ }} Proof. rewrite wp_unfold /wp_pre. iIntros "H". destruct (to_val e) as [v|] eqn:?. { by iMod "H". } - iIntros (σ1) "Hσ1". iMod "H". by iApply "H". + iIntros (σ1 κ κs) "Hσ1". iMod "H". by iApply "H". Qed. Lemma wp_fupd s E e Φ : WP e @ s; E {{ v, |={E}=> Φ v }} ⊢ WP e @ s; E {{ Φ }}. Proof. iIntros "H". iApply (wp_strong_mono s s E with "H"); auto. Qed. @@ -104,14 +104,14 @@ Proof. iIntros "H". rewrite !wp_unfold /wp_pre. destruct (to_val e) as [v|] eqn:He. { by iDestruct "H" as ">>> $". } - iIntros (σ1) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". + iIntros (σ1 κ κs) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]". iModIntro. iIntros (e2 σ2 efs Hstep). iMod ("H" with "[//]") as "H". iIntros "!>!>". iMod "H" as "(Hphy & H & $)". destruct s. - rewrite !wp_unfold /wp_pre. destruct (to_val e2) as [v2|] eqn:He2. + iDestruct "H" as ">> $". by iFrame. - + iMod ("H" with "[$]") as "[H _]". iDestruct "H" as %(? & ? & ? & ?). - by edestruct (atomic _ _ _ _ Hstep). - - destruct (atomic _ _ _ _ Hstep) as [v <-%of_to_val]. + + iMod ("H" $! _ [] with "[$]") as "[H _]". iDestruct "H" as %(? & ? & ? & ? & ?). + by edestruct (atomic _ _ _ _ _ Hstep). + - destruct (atomic _ _ _ _ _ Hstep) as [v <-%of_to_val]. iMod (wp_value_inv' with "H") as ">H". iFrame "Hphy". by iApply wp_value'. Qed. @@ -120,7 +120,7 @@ Lemma wp_step_fupd s E1 E2 e P Φ : (|={E1,E2}â–·=> P) -∗ WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }} -∗ WP e @ s; E1 {{ Φ }}. Proof. rewrite !wp_unfold /wp_pre. iIntros (-> ?) "HR H". - iIntros (σ1) "Hσ". iMod "HR". iMod ("H" with "[$]") as "[$ H]". + iIntros (σ1 κ κs) "Hσ". iMod "HR". iMod ("H" with "[$]") as "[$ H]". iIntros "!>" (e2 σ2 efs Hstep). iMod ("H" $! e2 σ2 efs with "[% //]") as "H". iIntros "!>!>". iMod "H" as "($ & H & $)". iMod "HR". iModIntro. iApply (wp_strong_mono s s E2 with "H"); [done..|]. @@ -134,11 +134,11 @@ Proof. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by iApply fupd_wp. } rewrite wp_unfold /wp_pre fill_not_val //. - iIntros (σ1) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. + iIntros (σ1 κ κs) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. { iPureIntro. destruct s; last done. unfold reducible in *. naive_solver eauto using fill_step. } iIntros (e2 σ2 efs Hstep). - destruct (fill_step_inv e σ1 e2 σ2 efs) as (e2'&->&?); auto. + destruct (fill_step_inv e σ1 κ e2 σ2 efs) as (e2'&->&?); auto. iMod ("H" $! e2' σ2 efs with "[//]") as "H". iIntros "!>!>". iMod "H" as "($ & H & $)". by iApply "IH". Qed. @@ -150,7 +150,7 @@ Proof. destruct (to_val e) as [v|] eqn:He. { apply of_to_val in He as <-. by rewrite !wp_unfold /wp_pre. } rewrite fill_not_val //. - iIntros (σ1) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. + iIntros (σ1 κ κs) "Hσ". iMod ("H" with "[$]") as "[% H]". iModIntro; iSplit. { destruct s; eauto using reducible_fill. } iIntros (e2 σ2 efs Hstep). iMod ("H" $! (K e2) σ2 efs with "[]") as "H"; [by eauto using fill_step|].