diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index 1974baea5df46fcba66a2dd52782428027aee520..5250feeb42858e9a3022202a267e68ba111cd798 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -125,6 +125,7 @@ Class Cofe (A : ofeT) := { conv_compl n c : compl c ≡{n}≡ c n; }. Arguments compl : simpl never. +Hint Mode Cofe ! : typeclass_instances. Lemma compl_chain_map `{Cofe A, Cofe B} (f : A → B) c `(NonExpansive f) : compl (chain_map f c) ≡ f (compl c). @@ -264,7 +265,7 @@ Section limit_preserving. (∀ x, P x ↔ Q x) → LimitPreserving P → LimitPreserving Q. Proof. intros HP Hlimit c ?. apply HP, Hlimit=> n; by apply HP. Qed. - Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P). + Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _ : A, P). Proof. intros c HP. apply (HP 0). Qed. Lemma limit_preserving_discrete (P : A → Prop) : diff --git a/theories/base_logic/upred.v b/theories/base_logic/upred.v index 9ba56ac869bec30087823a8331d0136003e9c32e..e1b07ab63f6032f6d81c6813174ba5388c1661fc 100644 --- a/theories/base_logic/upred.v +++ b/theories/base_logic/upred.v @@ -402,7 +402,7 @@ Lemma entails_lim (cP cQ : chain (uPredO M)) : (∀ n, cP n ⊢ cQ n) → compl cP ⊢ compl cQ. Proof. intros Hlim; split=> n m ? HP. - eapply uPred_holds_ne, Hlim, HP; eauto using conv_compl. + eapply uPred_holds_ne, Hlim, HP; rewrite ?conv_compl; eauto. Qed. (** Non-expansiveness and setoid morphisms *)