diff --git a/theories/heap_lang/lifting.v b/theories/heap_lang/lifting.v index 2a39566e8f9fe5e7b45c3a8f41958d948a8bca69..2472bbd6f416ee4cb224daaae9aeca2497e6769f 100644 --- a/theories/heap_lang/lifting.v +++ b/theories/heap_lang/lifting.v @@ -18,7 +18,7 @@ Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := { iris_invG := heapG_invG; state_interp σ κs _ := (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I; - fork_post := True%I; + fork_post _ := True%I; }. (** Override the notations so that scopes and coercions work out *) diff --git a/theories/heap_lang/total_adequacy.v b/theories/heap_lang/total_adequacy.v index 4294e99404ad14ceb009740312b83366899a7bb2..8cfbfb39bd1d49f491d4d3909e6b21c29efffc7c 100644 --- a/theories/heap_lang/total_adequacy.v +++ b/theories/heap_lang/total_adequacy.v @@ -14,6 +14,6 @@ Proof. iModIntro. iExists (λ σ κs _, (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I), - True%I; iFrame. + (λ _, True%I); iFrame. iApply (Hwp (HeapG _ _ _ _)). Qed. diff --git a/theories/program_logic/adequacy.v b/theories/program_logic/adequacy.v index 56bd99597fcff5344d60df54f4436dd031f06b0f..b448661ab9c05d8d98891cf58540f05f5c7d0cbd 100644 --- a/theories/program_logic/adequacy.v +++ b/theories/program_logic/adequacy.v @@ -39,7 +39,7 @@ Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Implicit Types Φs : list (val Λ → iProp Σ). -Notation wptp s t := ([∗ list] ef ∈ t, WP ef @ s; ⊤ {{ _, fork_post }})%I. +Notation wptp s t := ([∗ list] ef ∈ t, WP ef @ s; ⊤ {{ fork_post }})%I. Lemma wp_step s e1 σ1 κ κs e2 σ2 efs m Φ : prim_step e1 σ1 κ e2 σ2 efs → @@ -112,8 +112,8 @@ Lemma wptp_all_result φ κs' s n e1 t1 κs v2 vs2 σ1 σ2 : nsteps n (e1 :: t1, σ1) κs (of_val <$> v2 :: vs2, σ2) → state_interp σ1 (κs ++ κs') (length t1) -∗ WP e1 @ s; ⊤ {{ v, - let m' := length vs2 in - state_interp σ2 κs' m' -∗ [∗] replicate m' fork_post ={⊤,∅}=∗ ⌜φ v ⌠}} -∗ + state_interp σ2 κs' (length vs2) -∗ + ([∗ list] v ∈ vs2, fork_post v) ={⊤,∅}=∗ ⌜φ v ⌠}} -∗ wptp s t1 ={⊤,∅}â–·=∗^(S n) ⌜φ v2 âŒ. Proof. @@ -122,7 +122,7 @@ Proof. iApply (step_fupdN_wand with "H"). iDestruct 1 as (e2 t2' ?) "(Hσ & H & Hvs)"; simplify_eq/=. rewrite fmap_length. iMod (wp_value_inv' with "H") as "H". - iAssert ([∗] replicate (length vs2) fork_post)%I with "[> Hvs]" as "Hm". + iAssert ([∗ list] v ∈ vs2, fork_post v)%I with "[> Hvs]" as "Hm". { clear Hstep. iInduction vs2 as [|v vs] "IH"; csimpl; first by iFrame. iDestruct "Hvs" as "[Hv Hvs]". iMod (wp_value_inv' with "Hv") as "$". by iApply "IH". } @@ -178,7 +178,7 @@ Theorem wp_strong_adequacy Σ Λ `{invPreG Σ} s e σ φ : (∀ `{Hinv : invG Σ} κs, (|={⊤}=> ∃ (stateI : state Λ → list (observation Λ) → nat → iProp Σ) - (fork_post : iProp Σ), + (fork_post : val Λ → iProp Σ), let _ : irisG Λ Σ := IrisG _ _ Hinv stateI fork_post in (* This could be strengthened so that φ also talks about the number of forked-off threads *) @@ -202,12 +202,12 @@ Qed. Theorem wp_adequacy Σ Λ `{invPreG Σ} s e σ φ : (∀ `{Hinv : invG Σ} κs, (|={⊤}=> ∃ stateI : state Λ → list (observation Λ) → iProp Σ, - let _ : irisG Λ Σ := IrisG _ _ Hinv (λ σ κs _, stateI σ κs) True%I in + let _ : irisG Λ Σ := IrisG _ _ Hinv (λ σ κs _, stateI σ κs) (λ _, True%I) in stateI σ κs ∗ WP e @ s; ⊤ {{ v, ⌜φ v⌠}})%I) → adequate s e σ (λ v _, φ v). Proof. intros Hwp. apply (wp_strong_adequacy Σ _)=> Hinv κs. - iMod Hwp as (stateI) "[Hσ H]". iExists (λ σ κs _, stateI σ κs), True%I. + iMod Hwp as (stateI) "[Hσ H]". iExists (λ σ κs _, stateI σ κs), (λ _, True%I). iIntros "{$Hσ} !>". iApply (wp_wand with "H"). iIntros (v ? σ') "_". iIntros "_". by iApply fupd_mask_weaken. @@ -217,11 +217,11 @@ Theorem wp_strong_all_adequacy Σ Λ `{invPreG Σ} s e σ1 v vs σ2 φ : (∀ `{Hinv : invG Σ} κs, (|={⊤}=> ∃ (stateI : state Λ → list (observation Λ) → nat → iProp Σ) - (fork_post : iProp Σ), + (fork_post : val Λ → iProp Σ), let _ : irisG Λ Σ := IrisG _ _ Hinv stateI fork_post in stateI σ1 κs 0 ∗ WP e @ s; ⊤ {{ v, - let m := length vs in - stateI σ2 [] m -∗ [∗] replicate m fork_post ={⊤,∅}=∗ ⌜ φ v ⌠}})%I) → + stateI σ2 [] (length vs) -∗ + ([∗ list] v ∈ vs, fork_post v) ={⊤,∅}=∗ ⌜ φ v ⌠}})%I) → rtc erased_step ([e], σ1) (of_val <$> v :: vs, σ2) → φ v. Proof. @@ -237,7 +237,7 @@ Theorem wp_invariance Σ Λ `{invPreG Σ} s e σ1 t2 σ2 φ : (∀ `{Hinv : invG Σ} κs κs', (|={⊤}=> ∃ (stateI : state Λ → list (observation Λ) → nat → iProp Σ) - (fork_post : iProp Σ), + (fork_post : val Λ → iProp Σ), let _ : irisG Λ Σ := IrisG _ _ Hinv stateI fork_post in stateI σ1 (κs ++ κs') 0 ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 κs' (pred (length t2)) ={⊤,∅}=∗ ⌜φâŒ))%I) → @@ -258,7 +258,7 @@ Corollary wp_invariance' Σ Λ `{invPreG Σ} s e σ1 t2 σ2 φ : (∀ `{Hinv : invG Σ} κs κs', (|={⊤}=> ∃ (stateI : state Λ → list (observation Λ) → nat → iProp Σ) - (fork_post : iProp Σ), + (fork_post : val Λ → iProp Σ), let _ : irisG Λ Σ := IrisG _ _ Hinv stateI fork_post in stateI σ1 κs 0 ∗ WP e @ s; ⊤ {{ _, True }} ∗ (stateI σ2 κs' (pred (length t2)) -∗ ∃ E, |={⊤,E}=> ⌜φâŒ))%I) → diff --git a/theories/program_logic/ectx_lifting.v b/theories/program_logic/ectx_lifting.v index 8272530755c9153a1254bc7254e4e97dfc4430ec..e27fe2059d7f54d586b631f33c95f75a7c835568 100644 --- a/theories/program_logic/ectx_lifting.v +++ b/theories/program_logic/ectx_lifting.v @@ -21,7 +21,7 @@ Lemma wp_lift_head_step_fupd {s E Φ} e1 : ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ state_interp σ2 κs (length efs + n) ∗ WP e2 @ s; E {{ Φ }} ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_step_fupd=>//. iIntros (σ1 κ κs Qs) "Hσ". @@ -37,7 +37,7 @@ Lemma wp_lift_head_step {s E Φ} e1 : â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ state_interp σ2 κs (length efs + n) ∗ WP e2 @ s; E {{ Φ }} ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_head_step_fupd; [done|]. iIntros (????) "?". @@ -72,7 +72,7 @@ Lemma wp_lift_atomic_head_step_fupd {s E1 E2 Φ} e1 : ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ state_interp σ2 κs (length efs + n) ∗ from_option Φ False (to_val e2) ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step_fupd; [done|]. @@ -88,7 +88,7 @@ Lemma wp_lift_atomic_head_step {s E Φ} e1 : â–· ∀ e2 σ2 efs, ⌜head_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ state_interp σ2 κs (length efs + n) ∗ from_option Φ False (to_val e2) ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step; eauto. diff --git a/theories/program_logic/lifting.v b/theories/program_logic/lifting.v index 30f3a36a74a9716b5b5cd27bf4f513e9091afa48..59068a5f290d13b0462ccb1587521efc5e2ef427 100644 --- a/theories/program_logic/lifting.v +++ b/theories/program_logic/lifting.v @@ -20,7 +20,7 @@ Lemma wp_lift_step_fupd s E Φ e1 : ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ state_interp σ2 κs (length efs + n) ∗ WP e2 @ s; E {{ Φ }} ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1 κ κs n) "Hσ". @@ -46,7 +46,7 @@ Lemma wp_lift_step s E Φ e1 : â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,E}=∗ state_interp σ2 κs (length efs + n) ∗ WP e2 @ s; E {{ Φ }} ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_step_fupd; [done|]. iIntros (????) "Hσ". @@ -89,7 +89,7 @@ Lemma wp_lift_atomic_step_fupd {s E1 E2 Φ} e1 : ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E1,E2}â–·=∗ state_interp σ2 κs (length efs + n) ∗ from_option Φ False (to_val e2) ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E1 {{ Φ }}. Proof. iIntros (?) "H". @@ -111,7 +111,7 @@ Lemma wp_lift_atomic_step {s E Φ} e1 : â–· ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={E}=∗ state_interp σ2 κs (length efs + n) ∗ from_option Φ False (to_val e2) ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, fork_post }}) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ fork_post }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply wp_lift_atomic_step_fupd; [done|]. diff --git a/theories/program_logic/ownp.v b/theories/program_logic/ownp.v index 8e707f1028b5d833919fd56dee9ada8391317734..def044befacb837fd4211eeffcbd8100de7e3a67 100644 --- a/theories/program_logic/ownp.v +++ b/theories/program_logic/ownp.v @@ -14,7 +14,7 @@ Class ownPG (Λ : language) (Σ : gFunctors) := OwnPG { Instance ownPG_irisG `{ownPG Λ Σ} : irisG Λ Σ := { iris_invG := ownP_invG; state_interp σ κs _ := own ownP_name (â— (Excl' σ))%I; - fork_post := True%I; + fork_post _ := True%I; }. Global Opaque iris_invG. @@ -60,7 +60,7 @@ Proof. intros Hwp Hsteps. eapply (wp_invariance Σ Λ s e σ1 t2 σ2 _)=> //. iIntros (? κs κs'). iMod (own_alloc (â— (Excl' σ1) â‹… â—¯ (Excl' σ1))) as (γσ) "[Hσ Hσf]"; first done. - iExists (λ σ κs' _, own γσ (â— (Excl' σ)))%I, True%I. + iExists (λ σ κs' _, own γσ (â— (Excl' σ)))%I, (λ _, True%I). iFrame "Hσ". iMod (Hwp (OwnPG _ _ _ _ γσ) with "[Hσf]") as "[$ H]"; first by rewrite /ownP; iFrame. diff --git a/theories/program_logic/total_adequacy.v b/theories/program_logic/total_adequacy.v index 4456805b1e079192ecc961e078e41ce40c2ad618..c742a636dc8e7c288049abf01b5de88b3a77d2bc 100644 --- a/theories/program_logic/total_adequacy.v +++ b/theories/program_logic/total_adequacy.v @@ -118,7 +118,7 @@ Theorem twp_total Σ Λ `{invPreG Σ} s e σ Φ : (∀ `{Hinv : invG Σ}, (|={⊤}=> ∃ (stateI : state Λ → list (observation Λ) → nat → iProp Σ) - (fork_post : iProp Σ), + (fork_post : val Λ → iProp Σ), let _ : irisG Λ Σ := IrisG _ _ Hinv stateI fork_post in stateI σ [] 0 ∗ WP e @ s; ⊤ [{ Φ }])%I) → sn erased_step ([e], σ). (* i.e. ([e], σ) is strongly normalizing *) diff --git a/theories/program_logic/total_ectx_lifting.v b/theories/program_logic/total_ectx_lifting.v index c9c02d3e416602747b611fb21c8d8be6cfa85a16..281737f38d25ed83e808fbefb7299e270c3e8365 100644 --- a/theories/program_logic/total_ectx_lifting.v +++ b/theories/program_logic/total_ectx_lifting.v @@ -21,7 +21,7 @@ Lemma twp_lift_head_step {s E Φ} e1 : ⌜κ = []⌠∗ state_interp σ2 κs (length efs + n) ∗ WP e2 @ s; E [{ Φ }] ∗ - [∗ list] i ↦ ef ∈ efs, WP ef @ s; ⊤ [{ _, fork_post }]) + [∗ list] i ↦ ef ∈ efs, WP ef @ s; ⊤ [{ fork_post }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (?) "H". @@ -49,7 +49,7 @@ Lemma twp_lift_atomic_head_step {s E Φ} e1 : ⌜κ = []⌠∗ state_interp σ2 κs (length efs + n) ∗ from_option Φ False (to_val e2) ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, fork_post }]) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ fork_post }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (?) "H". iApply twp_lift_atomic_step; eauto. diff --git a/theories/program_logic/total_lifting.v b/theories/program_logic/total_lifting.v index f36e18e950823c77ca53f3a6e923107ec581c7e4..9a9da9bd854a4862005995f2a30e7cceebeed54c 100644 --- a/theories/program_logic/total_lifting.v +++ b/theories/program_logic/total_lifting.v @@ -21,7 +21,7 @@ Lemma twp_lift_step s E Φ e1 : ⌜κ = []⌠∗ state_interp σ2 κs (length efs + n) ∗ WP e2 @ s; E [{ Φ }] ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, fork_post }]) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ fork_post }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. by rewrite twp_unfold /twp_pre=> ->. Qed. @@ -52,7 +52,7 @@ Lemma twp_lift_atomic_step {s E Φ} e1 : ⌜κ = []⌠∗ state_interp σ2 κs (length efs + n) ∗ from_option Φ False (to_val e2) ∗ - [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ _, fork_post }]) + [∗ list] ef ∈ efs, WP ef @ s; ⊤ [{ fork_post }]) ⊢ WP e1 @ s; E [{ Φ }]. Proof. iIntros (?) "H". diff --git a/theories/program_logic/total_weakestpre.v b/theories/program_logic/total_weakestpre.v index 6892cc1fc966cf379baa68a769d5f52e8e5fa3ce..e3da620ff1bbb625249f07a2de1dcb7432f3b8e4 100644 --- a/theories/program_logic/total_weakestpre.v +++ b/theories/program_logic/total_weakestpre.v @@ -16,7 +16,7 @@ Definition twp_pre `{irisG Λ Σ} (s : stuckness) ⌜κ = []⌠∗ state_interp σ2 κs (length efs + n) ∗ wp E e2 Φ ∗ - [∗ list] ef ∈ efs, wp ⊤ ef (λ _, fork_post) + [∗ list] ef ∈ efs, wp ⊤ ef fork_post end%I. Lemma twp_pre_mono `{irisG Λ Σ} s diff --git a/theories/program_logic/weakestpre.v b/theories/program_logic/weakestpre.v index 6e5598aef95a214e1fef5cf3fbda575da05ef3e1..8cfeea29fd756affef44c8502ca562afa8cdf345 100644 --- a/theories/program_logic/weakestpre.v +++ b/theories/program_logic/weakestpre.v @@ -18,7 +18,7 @@ Class irisG (Λ : language) (Σ : gFunctors) := IrisG { (** A fixed postcondition for any forked-off thread. For most languages, e.g. heap_lang, this will simply be [True]. However, it is useful if one wants to keep track of resources precisely, as in e.g. Iron. *) - fork_post : iProp Σ; + fork_post : val Λ → iProp Σ; }. Global Opaque iris_invG. @@ -33,7 +33,7 @@ Definition wp_pre `{irisG Λ Σ} (s : stuckness) ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌠={∅,∅,E}â–·=∗ state_interp σ2 κs (length efs + n) ∗ wp E e2 Φ ∗ - [∗ list] i ↦ ef ∈ efs, wp ⊤ ef (λ _, fork_post) + [∗ list] i ↦ ef ∈ efs, wp ⊤ ef fork_post end%I. Local Instance wp_pre_contractive `{irisG Λ Σ} s : Contractive (wp_pre s).