diff --git a/program_logic/thread_local.v b/program_logic/thread_local.v index f1fbb86cfb53300dacc7746013fc0698ad93dc5f..452b897780b2b1ae34491b5dbe3bac642c7bdb61 100644 --- a/program_logic/thread_local.v +++ b/program_logic/thread_local.v @@ -2,44 +2,52 @@ From iris.algebra Require Export gmap gset coPset. From iris.proofmode Require Import invariants tactics. Import uPred. +Definition tlN : namespace := nroot .@ "tl". Definition thread_id := gname. Class thread_localG Σ := tl_inG :> inG Σ (prodR coPset_disjR (gset_disjR positive)). -Definition tlN : namespace := nroot .@ "tl". - Section defs. Context `{irisG Λ Σ, thread_localG Σ}. - Definition tl_tokens (tid : thread_id) (E : coPset) : iProp Σ := + Definition tl_own (tid : thread_id) (E : coPset) : iProp Σ := own tid (CoPset E, ∅). Definition tl_inv (tid : thread_id) (N : namespace) (P : iProp Σ) : iProp Σ := (∃ i, ■(i ∈ nclose N) ∧ - inv tlN (P ★ own tid (∅, GSet {[i]}) ∨ tl_tokens tid {[i]}))%I. + inv tlN (P ★ own tid (∅, GSet {[i]}) ∨ tl_own tid {[i]}))%I. End defs. -Instance: Params (@tl_tokens) 2. Instance: Params (@tl_inv) 4. +Typeclasses Opaque tl_own tl_inv. Section proofs. Context `{irisG Λ Σ, thread_localG Σ}. - Lemma tid_alloc : True =r=> ∃ tid, tl_tokens tid ⊤. + Global Instance tl_own_timeless tid E : TimelessP (tl_own tid E). + Proof. rewrite /tl_own; apply _. Qed. + + Global Instance tl_inv_ne tid N n : Proper (dist n ==> dist n) (tl_inv tid N). + Proof. rewrite /tl_inv. solve_proper. Qed. + Global Instance tl_inv_proper tid N : Proper ((≡) ==> (≡)) (tl_inv tid N). + Proof. apply (ne_proper _). Qed. + + Global Instance tl_inv_persistent tid N P : PersistentP (tl_inv tid N P). + Proof. rewrite /tl_inv; apply _. Qed. + + Lemma tl_alloc : True =r=> ∃ tid, tl_own tid ⊤. Proof. by apply own_alloc. Qed. - Lemma tl_tokens_disj tid E1 E2 : - tl_tokens tid E1 ★ tl_tokens tid E2 ⊢ ■(E1 ⊥ E2). + Lemma tl_own_disjoint tid E1 E2 : tl_own tid E1 ★ tl_own tid E2 ⊢ ■(E1 ⊥ E2). Proof. - rewrite /tl_tokens -own_op own_valid -coPset_disj_valid_op discrete_valid. - by iIntros ([? _]). + rewrite /tl_own -own_op own_valid -coPset_disj_valid_op. by iIntros ([? _]). Qed. - Lemma tl_tokens_union tid E1 E2 : - E1 ⊥ E2 → tl_tokens tid (E1 ∪ E2) ⊣⊢ tl_tokens tid E1 ★ tl_tokens tid E2. + Lemma tl_own_union tid E1 E2 : + E1 ⊥ E2 → tl_own tid (E1 ∪ E2) ⊣⊢ tl_own tid E1 ★ tl_own tid E2. Proof. - intros ?. by rewrite /tl_tokens -own_op pair_op left_id coPset_disj_union. + intros ?. by rewrite /tl_own -own_op pair_op left_id coPset_disj_union. Qed. Lemma tl_inv_alloc tid E N P : ▷ P ={E}=> tl_inv tid N P. @@ -55,19 +63,20 @@ Section proofs. eapply nclose_infinite, (difference_finite_inv _ _), Hfin. apply of_gset_finite. } simpl. iDestruct "Hm" as %(<- & i & -> & ?). - iVs (inv_alloc tlN with "[-]"). 2:iVsIntro; iExists i; eauto. + rewrite /tl_inv. + iVs (inv_alloc tlN with "[-]"); last (iVsIntro; iExists i; eauto). iNext. iLeft. by iFrame. Qed. Lemma tl_inv_open tid tlE E N P : nclose tlN ⊆ tlE → nclose N ⊆ E → - tl_inv tid N P ⊢ tl_tokens tid E ={tlE}=★ ▷ P ★ tl_tokens tid (E ∖ N) ★ - (▷ P ★ tl_tokens tid (E ∖ N) ={tlE}=★ tl_tokens tid E). + tl_inv tid N P ⊢ tl_own tid E ={tlE}=★ ▷ P ★ tl_own tid (E ∖ N) ★ + (▷ P ★ tl_own tid (E ∖ N) ={tlE}=★ tl_own tid E). Proof. - iIntros (??) "#Htlinv Htoks". - iDestruct "Htlinv" as (i) "[% #Hinv]". + rewrite /tl_inv. iIntros (??) "#Htlinv Htoks". + iDestruct "Htlinv" as (i) "[% Hinv]". rewrite {1 4}(union_difference_L (nclose N) E) //. - rewrite {1 5}(union_difference_L {[i]} (nclose N)) ?tl_tokens_union; try set_solver. + rewrite {1 5}(union_difference_L {[i]} (nclose N)) ?tl_own_union; [|set_solver..]. iDestruct "Htoks" as "[[Htoki $] $]". iInv tlN as "[[$ >Hdis]|>Htoki2]" "Hclose". - iVs ("Hclose" with "[Htoki]") as "_"; first auto. @@ -77,7 +86,7 @@ Section proofs. iDestruct (own_valid with "Hdis") as %[_ Hval]. revert Hval. rewrite gset_disj_valid_op. set_solver. + iFrame. iApply "Hclose". iNext. iLeft. by iFrame. - - iDestruct (tl_tokens_disj tid {[i]} {[i]} with "[-]") as %?. by iFrame. + - iDestruct (tl_own_disjoint tid {[i]} {[i]} with "[-]") as %?; first by iFrame. set_solver. Qed. End proofs.