From 3f768dd2a31883623920c1adfc7e149d114372e3 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Sun, 3 Dec 2017 21:10:52 +0100 Subject: [PATCH] Put Plain/Persistent/Absorbing/Affine instances together at the bottom of the section. Also, persistent stuff goes before plain stuff. --- theories/bi/derived.v | 650 +++++++++++++++++++++--------------------- 1 file changed, 321 insertions(+), 329 deletions(-) diff --git a/theories/bi/derived.v b/theories/bi/derived.v index b19bd48e0..29a897439 100644 --- a/theories/bi/derived.v +++ b/theories/bi/derived.v @@ -822,63 +822,12 @@ Proof. by rewrite /bi_absorbingly affinely_sep affinely_True_emp affinely_emp left_id. Qed. -(* Affine propositions *) +(* Affine and absorbing propositions *) Global Instance Affine_proper : Proper ((⊣⊢) ==> iff) (@Affine PROP). Proof. solve_proper. Qed. - -Global Instance emp_affine_l : Affine (emp%I : PROP). -Proof. by rewrite /Affine. Qed. -Global Instance and_affine_l P Q : Affine P → Affine (P ∧ Q). -Proof. rewrite /Affine=> ->; auto. Qed. -Global Instance and_affine_r P Q : Affine Q → Affine (P ∧ Q). -Proof. rewrite /Affine=> ->; auto. Qed. -Global Instance or_affine P Q : Affine P → Affine Q → Affine (P ∨ Q). -Proof. rewrite /Affine=> -> ->; auto. Qed. -Global Instance forall_affine `{Inhabited A} (Φ : A → PROP) : - (∀ x, Affine (Φ x)) → Affine (∀ x, Φ x). -Proof. intros. rewrite /Affine (forall_elim inhabitant). apply: affine. Qed. -Global Instance exist_affine {A} (Φ : A → PROP) : - (∀ x, Affine (Φ x)) → Affine (∃ x, Φ x). -Proof. rewrite /Affine=> H. apply exist_elim=> a. by rewrite H. Qed. - -Global Instance sep_affine P Q : Affine P → Affine Q → Affine (P ∗ Q). -Proof. rewrite /Affine=>-> ->. by rewrite left_id. Qed. -Global Instance affinely_affine P : Affine (bi_affinely P). -Proof. rewrite /bi_affinely. apply _. Qed. - -(* Absorbing propositions *) Global Instance Absorbing_proper : Proper ((⊣⊢) ==> iff) (@Absorbing PROP). Proof. solve_proper. Qed. -Global Instance pure_absorbing φ : Absorbing (⌜φâŒ%I : PROP). -Proof. by rewrite /Absorbing absorbingly_pure. Qed. -Global Instance and_absorbing P Q : Absorbing P → Absorbing Q → Absorbing (P ∧ Q). -Proof. intros. by rewrite /Absorbing absorbingly_and !absorbing. Qed. -Global Instance or_absorbing P Q : Absorbing P → Absorbing Q → Absorbing (P ∨ Q). -Proof. intros. by rewrite /Absorbing absorbingly_or !absorbing. Qed. -Global Instance forall_absorbing {A} (Φ : A → PROP) : - (∀ x, Absorbing (Φ x)) → Absorbing (∀ x, Φ x). -Proof. rewrite /Absorbing=> ?. rewrite absorbingly_forall. auto using forall_mono. Qed. -Global Instance exist_absorbing {A} (Φ : A → PROP) : - (∀ x, Absorbing (Φ x)) → Absorbing (∃ x, Φ x). -Proof. rewrite /Absorbing=> ?. rewrite absorbingly_exist. auto using exist_mono. Qed. - -Global Instance internal_eq_absorbing {A : ofeT} (x y : A) : - Absorbing (x ≡ y : PROP)%I. -Proof. by rewrite /Absorbing absorbingly_internal_eq. Qed. - -Global Instance sep_absorbing_l P Q : Absorbing P → Absorbing (P ∗ Q). -Proof. intros. by rewrite /Absorbing -absorbingly_sep_l absorbing. Qed. -Global Instance sep_absorbing_r P Q : Absorbing Q → Absorbing (P ∗ Q). -Proof. intros. by rewrite /Absorbing -absorbingly_sep_r absorbing. Qed. - -Global Instance wand_absorbing P Q : Absorbing Q → Absorbing (P -∗ Q). -Proof. intros. by rewrite /Absorbing absorbingly_wand !absorbing -absorbingly_intro. Qed. - -Global Instance absorbingly_absorbing P : Absorbing (bi_absorbingly P). -Proof. rewrite /bi_absorbingly. apply _. Qed. - -(* Properties of affine and absorbing propositions *) Lemma affine_affinely P `{!Affine P} : bi_affinely P ⊣⊢ P. Proof. rewrite /bi_affinely. apply (anti_symm _); auto. Qed. Lemma absorbing_absorbingly P `{!Absorbing P} : bi_absorbingly P ⊣⊢ P. @@ -909,7 +858,6 @@ Proof. apply and_intro; apply: sep_elim_l || apply: sep_elim_r. Qed. - Lemma affinely_intro P Q `{!Affine P} : (P ⊢ Q) → P ⊢ bi_affinely Q. Proof. intros <-. by rewrite affine_affinely. Qed. @@ -974,8 +922,6 @@ Proof. apply (anti_symm _), absorbingly_intro. by rewrite /bi_absorbingly comm persistently_absorbing. Qed. -Global Instance persistently_absorbing P : Absorbing (bi_persistently P). -Proof. by rewrite /Absorbing absorbingly_persistently. Qed. Lemma persistently_and_sep_assoc P Q R : bi_persistently P ∧ (Q ∗ R) ⊣⊢ (bi_persistently P ∧ Q) ∗ R. @@ -983,10 +929,10 @@ Proof. apply (anti_symm (⊢)). - rewrite {1}persistently_idemp_2 persistently_and_sep_elim assoc. apply sep_mono_l, and_intro. - + by rewrite and_elim_r sep_elim_l. + + by rewrite and_elim_r persistently_absorbing. + by rewrite and_elim_l left_id. - apply and_intro. - + by rewrite and_elim_l sep_elim_l. + + by rewrite and_elim_l persistently_absorbing. + by rewrite and_elim_r. Qed. Lemma persistently_and_emp_elim P : emp ∧ bi_persistently P ⊢ P. @@ -1012,7 +958,8 @@ Proof. intros <-. apply persistently_idemp_2. Qed. Lemma persistently_pure φ : bi_persistently ⌜φ⌠⊣⊢ ⌜φâŒ. Proof. - apply (anti_symm _); first by rewrite persistently_elim. + apply (anti_symm _). + { by rewrite persistently_elim_absorbingly absorbingly_pure. } apply pure_elim'=> Hφ. trans (∀ x : False, bi_persistently True : PROP)%I; [by apply forall_intro|]. rewrite persistently_forall_2. auto using persistently_mono, pure_intro. @@ -1045,10 +992,11 @@ Qed. Lemma persistently_sep_dup P : bi_persistently P ⊣⊢ bi_persistently P ∗ bi_persistently P. Proof. - apply (anti_symm _); last by eauto using sep_elim_l with typeclass_instances. - by rewrite -{1}(idemp bi_and (bi_persistently _)%I) - -{2}(left_id emp%I _ (bi_persistently _)%I) - persistently_and_sep_assoc and_elim_l. + apply (anti_symm _). + - rewrite -{1}(idemp bi_and (bi_persistently _)). + by rewrite -{2}(left_id emp%I _ (bi_persistently _)) + persistently_and_sep_assoc and_elim_l. + - by rewrite persistently_absorbing. Qed. Lemma persistently_and_sep_l_1 P Q : bi_persistently P ∧ Q ⊢ bi_persistently P ∗ Q. @@ -1064,7 +1012,8 @@ Proof. by rewrite -plainly_elim_persistently -plainly_emp_intro. Qed. Lemma persistently_internal_eq {A : ofeT} (a b : A) : bi_persistently (a ≡ b) ⊣⊢ a ≡ b. Proof. - apply (anti_symm (⊢)); first by rewrite persistently_elim. + apply (anti_symm (⊢)). + { by rewrite persistently_elim_absorbingly absorbingly_internal_eq. } apply (internal_eq_rewrite' a b (λ b, bi_persistently (a ≡ b))%I); auto. rewrite -(internal_eq_refl emp%I a). apply persistently_emp_intro. Qed. @@ -1087,9 +1036,10 @@ Qed. Lemma and_sep_persistently P Q : bi_persistently P ∧ bi_persistently Q ⊣⊢ bi_persistently P ∗ bi_persistently Q. Proof. - apply (anti_symm _). - - auto using persistently_and_sep_l_1. - - eauto 10 using sep_elim_l, sep_elim_r with typeclass_instances. + apply (anti_symm _); auto using persistently_and_sep_l_1. + apply and_intro. + - by rewrite persistently_absorbing. + - by rewrite comm persistently_absorbing. Qed. Lemma persistently_sep_2 P Q : bi_persistently P ∗ bi_persistently Q ⊢ bi_persistently (P ∗ Q). @@ -1098,8 +1048,9 @@ Lemma persistently_sep `{PositiveBI PROP} P Q : bi_persistently (P ∗ Q) ⊣⊢ bi_persistently P ∗ bi_persistently Q. Proof. apply (anti_symm _); auto using persistently_sep_2. - by rewrite -persistently_affinely affinely_sep sep_and !affinely_elim persistently_and - and_sep_persistently. + rewrite -persistently_affinely affinely_sep -and_sep_persistently. apply and_intro. + - by rewrite (affinely_elim_emp Q) right_id affinely_elim. + - by rewrite (affinely_elim_emp P) left_id affinely_elim. Qed. Lemma persistently_wand P Q : @@ -1175,28 +1126,26 @@ Global Instance plainly_flip_mono' : Proper (flip (⊢) ==> flip (⊢)) (@bi_plainly PROP). Proof. intros P Q; apply plainly_mono. Qed. -Lemma absorbingly_plainly P : bi_absorbingly (bi_plainly P) ⊣⊢ bi_plainly P. +Lemma persistently_plainly P : bi_persistently (bi_plainly P) ⊣⊢ bi_plainly P. Proof. - apply (anti_symm _), absorbingly_intro. - by rewrite /bi_absorbingly comm plainly_absorbing. + apply (anti_symm _). + - by rewrite persistently_elim_absorbingly /bi_absorbingly comm plainly_absorbing. + - by rewrite {1}plainly_idemp_2 plainly_elim_persistently. Qed. -Global Instance plainly_absorbing P : Absorbing (bi_plainly P). -Proof. by rewrite /Absorbing /bi_absorbingly comm plainly_absorbing. Qed. +Lemma plainly_persistently P : bi_plainly (bi_persistently P) ⊣⊢ bi_plainly P. +Proof. + apply (anti_symm _); first apply plainly_persistently_1. + by rewrite {1}plainly_idemp_2 (plainly_elim_persistently P). +Qed. + +Lemma absorbingly_plainly P : bi_absorbingly (bi_plainly P) ⊣⊢ bi_plainly P. +Proof. by rewrite -(persistently_plainly P) absorbingly_persistently. Qed. Lemma plainly_and_sep_elim P Q : bi_plainly P ∧ Q -∗ (emp ∧ P) ∗ Q. Proof. by rewrite plainly_elim_persistently persistently_and_sep_elim. Qed. Lemma plainly_and_sep_assoc P Q R : bi_plainly P ∧ (Q ∗ R) ⊣⊢ (bi_plainly P ∧ Q) ∗ R. -Proof. - apply (anti_symm (⊢)). - - rewrite {1}plainly_idemp_2 plainly_and_sep_elim assoc. - apply sep_mono_l, and_intro. - + by rewrite and_elim_r sep_elim_l. - + by rewrite and_elim_l left_id. - - apply and_intro. - + by rewrite and_elim_l sep_elim_l. - + by rewrite and_elim_r. -Qed. +Proof. by rewrite -(persistently_plainly P) persistently_and_sep_assoc. Qed. Lemma plainly_and_emp_elim P : emp ∧ bi_plainly P ⊢ P. Proof. by rewrite plainly_elim_persistently persistently_and_emp_elim. Qed. Lemma plainly_elim_absorbingly P : bi_plainly P ⊢ bi_absorbingly P. @@ -1205,7 +1154,7 @@ Lemma plainly_elim P `{!Absorbing P} : bi_plainly P ⊢ P. Proof. by rewrite plainly_elim_persistently persistently_elim. Qed. Lemma plainly_idemp_1 P : bi_plainly (bi_plainly P) ⊢ bi_plainly P. -Proof. by rewrite plainly_elim. Qed. +Proof. by rewrite plainly_elim_absorbingly absorbingly_plainly. Qed. Lemma plainly_idemp P : bi_plainly (bi_plainly P) ⊣⊢ bi_plainly P. Proof. apply (anti_symm _); auto using plainly_idemp_1, plainly_idemp_2. Qed. @@ -1215,7 +1164,7 @@ Proof. intros <-. apply plainly_idemp_2. Qed. Lemma plainly_pure φ : bi_plainly ⌜φ⌠⊣⊢ ⌜φâŒ. Proof. apply (anti_symm _); auto. - - by rewrite plainly_elim. + - by rewrite plainly_elim_persistently persistently_pure. - apply pure_elim'=> Hφ. trans (∀ x : False, bi_plainly True : PROP)%I; [by apply forall_intro|]. rewrite plainly_forall_2. by rewrite -(pure_intro _ φ). @@ -1244,9 +1193,10 @@ Qed. Lemma plainly_sep_dup P : bi_plainly P ⊣⊢ bi_plainly P ∗ bi_plainly P. Proof. - apply (anti_symm _); last by eauto using sep_elim_l with typeclass_instances. - by rewrite -{1}(idemp bi_and (bi_plainly _)%I) - -{2}(left_id emp%I _ (bi_plainly _)%I) plainly_and_sep_assoc and_elim_l. + apply (anti_symm _). + - rewrite -{1}(idemp bi_and (bi_plainly _)). + by rewrite -{2}(left_id emp%I _ (bi_plainly _)) plainly_and_sep_assoc and_elim_l. + - by rewrite plainly_absorbing. Qed. Lemma plainly_and_sep_l_1 P Q : bi_plainly P ∧ Q ⊢ bi_plainly P ∗ Q. @@ -1256,7 +1206,8 @@ Proof. by rewrite !(comm _ P) plainly_and_sep_l_1. Qed. Lemma plainly_internal_eq {A:ofeT} (a b : A) : bi_plainly (a ≡ b) ⊣⊢ a ≡ b. Proof. - apply (anti_symm (⊢)); [by rewrite plainly_elim|]. + apply (anti_symm (⊢)). + { by rewrite plainly_elim_absorbingly absorbingly_internal_eq. } apply (internal_eq_rewrite' a b (λ b, bi_plainly (a ≡ b))%I); [solve_proper|done|]. rewrite -(internal_eq_refl True%I a) plainly_pure; auto. Qed. @@ -1276,9 +1227,10 @@ Proof. by rewrite /bi_affinely plainly_and -plainly_True_emp plainly_pure left_i Lemma and_sep_plainly P Q : bi_plainly P ∧ bi_plainly Q ⊣⊢ bi_plainly P ∗ bi_plainly Q. Proof. - apply (anti_symm _). - - auto using plainly_and_sep_l_1. - - eauto 10 using sep_elim_l, sep_elim_r with typeclass_instances. + apply (anti_symm _); auto using plainly_and_sep_l_1. + apply and_intro. + - by rewrite plainly_absorbing. + - by rewrite comm plainly_absorbing. Qed. Lemma plainly_sep_2 P Q : bi_plainly P ∗ bi_plainly Q ⊢ bi_plainly (P ∗ Q). @@ -1287,8 +1239,9 @@ Lemma plainly_sep `{PositiveBI PROP} P Q : bi_plainly (P ∗ Q) ⊣⊢ bi_plainly P ∗ bi_plainly Q. Proof. apply (anti_symm _); auto using plainly_sep_2. - by rewrite -plainly_affinely affinely_sep sep_and !affinely_elim plainly_and - and_sep_plainly. + rewrite -plainly_affinely affinely_sep -and_sep_plainly. apply and_intro. + - by rewrite (affinely_elim_emp Q) right_id affinely_elim. + - by rewrite (affinely_elim_emp P) left_id affinely_elim. Qed. Lemma plainly_wand P Q : bi_plainly (P -∗ Q) ⊢ bi_plainly P -∗ bi_plainly Q. @@ -1306,17 +1259,6 @@ Proof. by rewrite (comm bi_and) plainly_and_emp_elim wand_elim_l. Qed. -Lemma persistently_plainly P : bi_persistently (bi_plainly P) ⊣⊢ bi_plainly P. -Proof. - apply (anti_symm _); [by rewrite persistently_elim|]. - by rewrite -plainly_elim_persistently plainly_idemp. -Qed. -Lemma plainly_persistently P : bi_plainly (bi_persistently P) ⊣⊢ bi_plainly P. -Proof. - apply (anti_symm _). apply plainly_persistently_1. - by rewrite -plainly_elim_persistently plainly_idemp. -Qed. - Section plainly_affinely_bi. Context `{AffineBI PROP}. @@ -1351,50 +1293,6 @@ Section plainly_affinely_bi. Qed. End plainly_affinely_bi. -(* The combined affinely plainly modality *) -Lemma affinely_plainly_elim P : â– P ⊢ P. -Proof. apply plainly_and_emp_elim. Qed. -Lemma affinely_plainly_intro' P Q : (â– P ⊢ Q) → â– P ⊢ â– Q. -Proof. intros <-. by rewrite plainly_affinely plainly_idemp. Qed. - -Lemma affinely_plainly_emp : â– emp ⊣⊢ emp. -Proof. - by rewrite -plainly_True_emp plainly_pure affinely_True_emp - affinely_emp. -Qed. -Lemma affinely_plainly_and P Q : â– (P ∧ Q) ⊣⊢ â– P ∧ â– Q. -Proof. by rewrite plainly_and affinely_and. Qed. -Lemma affinely_plainly_or P Q : â– (P ∨ Q) ⊣⊢ â– P ∨ â– Q. -Proof. by rewrite plainly_or affinely_or. Qed. -Lemma affinely_plainly_exist {A} (Φ : A → PROP) : â– (∃ x, Φ x) ⊣⊢ ∃ x, ■Φ x. -Proof. by rewrite plainly_exist affinely_exist. Qed. -Lemma affinely_plainly_sep_2 P Q : â– P ∗ â– Q ⊢ â– (P ∗ Q). -Proof. by rewrite affinely_sep_2 plainly_sep_2. Qed. -Lemma affinely_plainly_sep `{PositiveBI PROP} P Q : â– (P ∗ Q) ⊣⊢ â– P ∗ â– Q. -Proof. by rewrite -affinely_sep -plainly_sep. Qed. - -Lemma affinely_plainly_idemp P : â– â– P ⊣⊢ â– P. -Proof. by rewrite plainly_affinely plainly_idemp. Qed. - -Lemma plainly_and_affinely_sep_l P Q : bi_plainly P ∧ Q ⊣⊢ â– P ∗ Q. -Proof. - apply (anti_symm _). - - by rewrite /bi_affinely -(comm bi_and (bi_plainly P)%I) - -plainly_and_sep_assoc left_id. - - apply and_intro. by rewrite affinely_elim sep_elim_l. by rewrite sep_elim_r. -Qed. -Lemma plainly_and_affinely_sep_r P Q : P ∧ bi_plainly Q ⊣⊢ P ∗ â– Q. -Proof. by rewrite !(comm _ P) plainly_and_affinely_sep_l. Qed. -Lemma and_sep_affinely_plainly P Q : â– P ∧ â– Q ⊣⊢ â– P ∗ â– Q. -Proof. - by rewrite -plainly_and_affinely_sep_l -affinely_and affinely_and_r. -Qed. - -Lemma affinely_plainly_sep_dup P : â– P ⊣⊢ â– P ∗ â– P. -Proof. - by rewrite -plainly_and_affinely_sep_l affinely_and_r affinely_and idemp. -Qed. - (* The combined affinely persistently modality *) Lemma affinely_persistently_elim P : â–¡ P ⊢ P. Proof. apply persistently_and_emp_elim. Qed. @@ -1423,9 +1321,11 @@ Proof. by rewrite persistently_affinely persistently_idemp. Qed. Lemma persistently_and_affinely_sep_l P Q : bi_persistently P ∧ Q ⊣⊢ â–¡ P ∗ Q. Proof. apply (anti_symm _). - - by rewrite /bi_affinely -(comm bi_and (bi_persistently P)%I) - -persistently_and_sep_assoc left_id. - - apply and_intro. by rewrite affinely_elim sep_elim_l. by rewrite sep_elim_r. + - by rewrite /bi_affinely -(comm bi_and (bi_persistently P)) + -persistently_and_sep_assoc left_id. + - apply and_intro. + + by rewrite affinely_elim persistently_absorbing. + + by rewrite affinely_elim_emp left_id. Qed. Lemma persistently_and_affinely_sep_r P Q : P ∧ bi_persistently Q ⊣⊢ P ∗ â–¡ Q. Proof. by rewrite !(comm _ P) persistently_and_affinely_sep_l. Qed. @@ -1439,6 +1339,44 @@ Proof. by rewrite -persistently_and_affinely_sep_l affinely_and_r affinely_and idemp. Qed. +(* The combined affinely plainly modality *) +Lemma affinely_plainly_elim P : â– P ⊢ P. +Proof. apply plainly_and_emp_elim. Qed. +Lemma affinely_plainly_intro' P Q : (â– P ⊢ Q) → â– P ⊢ â– Q. +Proof. intros <-. by rewrite plainly_affinely plainly_idemp. Qed. + +Lemma affinely_plainly_emp : â– emp ⊣⊢ emp. +Proof. + by rewrite -plainly_True_emp plainly_pure affinely_True_emp affinely_emp. +Qed. +Lemma affinely_plainly_and P Q : â– (P ∧ Q) ⊣⊢ â– P ∧ â– Q. +Proof. by rewrite plainly_and affinely_and. Qed. +Lemma affinely_plainly_or P Q : â– (P ∨ Q) ⊣⊢ â– P ∨ â– Q. +Proof. by rewrite plainly_or affinely_or. Qed. +Lemma affinely_plainly_exist {A} (Φ : A → PROP) : â– (∃ x, Φ x) ⊣⊢ ∃ x, ■Φ x. +Proof. by rewrite plainly_exist affinely_exist. Qed. +Lemma affinely_plainly_sep_2 P Q : â– P ∗ â– Q ⊢ â– (P ∗ Q). +Proof. by rewrite affinely_sep_2 plainly_sep_2. Qed. +Lemma affinely_plainly_sep `{PositiveBI PROP} P Q : â– (P ∗ Q) ⊣⊢ â– P ∗ â– Q. +Proof. by rewrite -affinely_sep -plainly_sep. Qed. + +Lemma affinely_plainly_idemp P : â– â– P ⊣⊢ â– P. +Proof. by rewrite plainly_affinely plainly_idemp. Qed. + +Lemma plainly_and_affinely_sep_l P Q : bi_plainly P ∧ Q ⊣⊢ â– P ∗ Q. +Proof. by rewrite -(persistently_plainly P) persistently_and_affinely_sep_l. Qed. +Lemma plainly_and_affinely_sep_r P Q : P ∧ bi_plainly Q ⊣⊢ P ∗ â– Q. +Proof. by rewrite !(comm _ P) plainly_and_affinely_sep_l. Qed. +Lemma and_sep_affinely_plainly P Q : â– P ∧ â– Q ⊣⊢ â– P ∗ â– Q. +Proof. + by rewrite -plainly_and_affinely_sep_l -affinely_and affinely_and_r. +Qed. + +Lemma affinely_plainly_sep_dup P : â– P ⊣⊢ â– P ∗ â– P. +Proof. + by rewrite -plainly_and_affinely_sep_l affinely_and_r affinely_and idemp. +Qed. + (* Conditional affinely modality *) Global Instance affinely_if_ne p : NonExpansive (@bi_affinely_if PROP p). Proof. solve_proper. Qed. @@ -1483,67 +1421,6 @@ Lemma affinely_if_idemp p P : bi_affinely_if p (bi_affinely_if p P) ⊣⊢ bi_affinely_if p P. Proof. destruct p; simpl; auto using affinely_idemp. Qed. -(* Conditional plainly *) -Global Instance plainly_if_ne p : NonExpansive (@bi_plainly_if PROP p). -Proof. solve_proper. Qed. -Global Instance plainly_if_proper p : - Proper ((⊣⊢) ==> (⊣⊢)) (@bi_plainly_if PROP p). -Proof. solve_proper. Qed. -Global Instance plainly_if_mono' p : - Proper ((⊢) ==> (⊢)) (@bi_plainly_if PROP p). -Proof. solve_proper. Qed. -Global Instance plainly_if_flip_mono' p : - Proper (flip (⊢) ==> flip (⊢)) (@bi_plainly_if PROP p). -Proof. solve_proper. Qed. - -Lemma plainly_if_mono p P Q : (P ⊢ Q) → bi_plainly_if p P ⊢ bi_plainly_if p Q. -Proof. by intros ->. Qed. - -Lemma plainly_if_pure p φ : bi_plainly_if p ⌜φ⌠⊣⊢ ⌜φâŒ. -Proof. destruct p; simpl; auto using plainly_pure. Qed. -Lemma plainly_if_and p P Q : bi_plainly_if p (P ∧ Q) ⊣⊢ bi_plainly_if p P ∧ bi_plainly_if p Q. -Proof. destruct p; simpl; auto using plainly_and. Qed. -Lemma plainly_if_or p P Q : bi_plainly_if p (P ∨ Q) ⊣⊢ bi_plainly_if p P ∨ bi_plainly_if p Q. -Proof. destruct p; simpl; auto using plainly_or. Qed. -Lemma plainly_if_exist {A} p (Ψ : A → PROP) : (bi_plainly_if p (∃ a, Ψ a)) ⊣⊢ ∃ a, bi_plainly_if p (Ψ a). -Proof. destruct p; simpl; auto using plainly_exist. Qed. -Lemma plainly_if_sep `{PositiveBI PROP} p P Q : - bi_plainly_if p (P ∗ Q) ⊣⊢ bi_plainly_if p P ∗ bi_plainly_if p Q. -Proof. destruct p; simpl; auto using plainly_sep. Qed. - -Lemma plainly_if_idemp p P : - bi_plainly_if p (bi_plainly_if p P) ⊣⊢ bi_plainly_if p P. -Proof. destruct p; simpl; auto using plainly_idemp. Qed. - -(* Conditional affinely plainly *) -Lemma affinely_plainly_if_mono p P Q : (P ⊢ Q) → â– ?p P ⊢ â– ?p Q. -Proof. by intros ->. Qed. - -Lemma affinely_plainly_if_elim p P : â– ?p P ⊢ P. -Proof. destruct p; simpl; auto using affinely_plainly_elim. Qed. -Lemma affinely_plainly_affinely_plainly_if p P : â– P ⊢ â– ?p P. -Proof. destruct p; simpl; auto using affinely_plainly_elim. Qed. -Lemma affinely_plainly_if_intro' p P Q : (â– ?p P ⊢ Q) → â– ?p P ⊢ â– ?p Q. -Proof. destruct p; simpl; auto using affinely_plainly_intro'. Qed. - -Lemma affinely_plainly_if_emp p : â– ?p emp ⊣⊢ emp. -Proof. destruct p; simpl; auto using affinely_plainly_emp. Qed. -Lemma affinely_plainly_if_and p P Q : â– ?p (P ∧ Q) ⊣⊢ â– ?p P ∧ â– ?p Q. -Proof. destruct p; simpl; auto using affinely_plainly_and. Qed. -Lemma affinely_plainly_if_or p P Q : â– ?p (P ∨ Q) ⊣⊢ â– ?p P ∨ â– ?p Q. -Proof. destruct p; simpl; auto using affinely_plainly_or. Qed. -Lemma affinely_plainly_if_exist {A} p (Ψ : A → PROP) : - (â– ?p ∃ a, Ψ a) ⊣⊢ ∃ a, â– ?p Ψ a. -Proof. destruct p; simpl; auto using affinely_plainly_exist. Qed. -Lemma affinely_plainly_if_sep_2 p P Q : â– ?p P ∗ â– ?p Q ⊢ â– ?p (P ∗ Q). -Proof. destruct p; simpl; auto using affinely_plainly_sep_2. Qed. -Lemma affinely_plainly_if_sep `{PositiveBI PROP} p P Q : - â– ?p (P ∗ Q) ⊣⊢ â– ?p P ∗ â– ?p Q. -Proof. destruct p; simpl; auto using affinely_plainly_sep. Qed. - -Lemma affinely_plainly_if_idemp p P : â– ?p â– ?p P ⊣⊢ â– ?p P. -Proof. destruct p; simpl; auto using affinely_plainly_idemp. Qed. - (* Conditional persistently *) Global Instance persistently_if_ne p : NonExpansive (@bi_persistently_if PROP p). Proof. solve_proper. Qed. @@ -1612,67 +1489,147 @@ Proof. destruct p; simpl; auto using affinely_persistently_sep. Qed. Lemma affinely_persistently_if_idemp p P : â–¡?p â–¡?p P ⊣⊢ â–¡?p P. Proof. destruct p; simpl; auto using affinely_persistently_idemp. Qed. -(* Plainness *) -Global Instance Plain_proper : Proper ((≡) ==> iff) (@Plain PROP). +(* Conditional plainly *) +Global Instance plainly_if_ne p : NonExpansive (@bi_plainly_if PROP p). +Proof. solve_proper. Qed. +Global Instance plainly_if_proper p : + Proper ((⊣⊢) ==> (⊣⊢)) (@bi_plainly_if PROP p). +Proof. solve_proper. Qed. +Global Instance plainly_if_mono' p : + Proper ((⊢) ==> (⊢)) (@bi_plainly_if PROP p). +Proof. solve_proper. Qed. +Global Instance plainly_if_flip_mono' p : + Proper (flip (⊢) ==> flip (⊢)) (@bi_plainly_if PROP p). Proof. solve_proper. Qed. -Global Instance pure_plain φ : Plain (⌜φâŒ%I : PROP). -Proof. by rewrite /Plain plainly_pure. Qed. -Global Instance emp_plain : Plain (emp%I : PROP). -Proof. apply plainly_emp_intro. Qed. -Global Instance and_plain P Q : Plain P → Plain Q → Plain (P ∧ Q). -Proof. intros. by rewrite /Plain plainly_and -!plain. Qed. -Global Instance or_plain P Q : Plain P → Plain Q → Plain (P ∨ Q). -Proof. intros. by rewrite /Plain plainly_or -!plain. Qed. -Global Instance forall_plain {A} (Ψ : A → PROP) : - (∀ x, Plain (Ψ x)) → Plain (∀ x, Ψ x). -Proof. - intros. rewrite /Plain plainly_forall. apply forall_mono=> x. by rewrite -plain. -Qed. -Global Instance exist_plain {A} (Ψ : A → PROP) : - (∀ x, Plain (Ψ x)) → Plain (∃ x, Ψ x). -Proof. - intros. rewrite /Plain plainly_exist. apply exist_mono=> x. by rewrite -plain. -Qed. +Lemma plainly_if_mono p P Q : (P ⊢ Q) → bi_plainly_if p P ⊢ bi_plainly_if p Q. +Proof. by intros ->. Qed. -Global Instance internal_eq_plain {A : ofeT} (a b : A) : - Plain (a ≡ b : PROP)%I. -Proof. by intros; rewrite /Plain plainly_internal_eq. Qed. +Lemma plainly_if_pure p φ : bi_plainly_if p ⌜φ⌠⊣⊢ ⌜φâŒ. +Proof. destruct p; simpl; auto using plainly_pure. Qed. +Lemma plainly_if_and p P Q : bi_plainly_if p (P ∧ Q) ⊣⊢ bi_plainly_if p P ∧ bi_plainly_if p Q. +Proof. destruct p; simpl; auto using plainly_and. Qed. +Lemma plainly_if_or p P Q : bi_plainly_if p (P ∨ Q) ⊣⊢ bi_plainly_if p P ∨ bi_plainly_if p Q. +Proof. destruct p; simpl; auto using plainly_or. Qed. +Lemma plainly_if_exist {A} p (Ψ : A → PROP) : (bi_plainly_if p (∃ a, Ψ a)) ⊣⊢ ∃ a, bi_plainly_if p (Ψ a). +Proof. destruct p; simpl; auto using plainly_exist. Qed. +Lemma plainly_if_sep `{PositiveBI PROP} p P Q : + bi_plainly_if p (P ∗ Q) ⊣⊢ bi_plainly_if p P ∗ bi_plainly_if p Q. +Proof. destruct p; simpl; auto using plainly_sep. Qed. -Global Instance impl_plain P Q : - Absorbing P → Plain P → Plain Q → Plain (P → Q). +Lemma plainly_if_idemp p P : + bi_plainly_if p (bi_plainly_if p P) ⊣⊢ bi_plainly_if p P. +Proof. destruct p; simpl; auto using plainly_idemp. Qed. + +(* Conditional affinely plainly *) +Lemma affinely_plainly_if_mono p P Q : (P ⊢ Q) → â– ?p P ⊢ â– ?p Q. +Proof. by intros ->. Qed. + +Lemma affinely_plainly_if_elim p P : â– ?p P ⊢ P. +Proof. destruct p; simpl; auto using affinely_plainly_elim. Qed. +Lemma affinely_plainly_affinely_plainly_if p P : â– P ⊢ â– ?p P. +Proof. destruct p; simpl; auto using affinely_plainly_elim. Qed. +Lemma affinely_plainly_if_intro' p P Q : (â– ?p P ⊢ Q) → â– ?p P ⊢ â– ?p Q. +Proof. destruct p; simpl; auto using affinely_plainly_intro'. Qed. + +Lemma affinely_plainly_if_emp p : â– ?p emp ⊣⊢ emp. +Proof. destruct p; simpl; auto using affinely_plainly_emp. Qed. +Lemma affinely_plainly_if_and p P Q : â– ?p (P ∧ Q) ⊣⊢ â– ?p P ∧ â– ?p Q. +Proof. destruct p; simpl; auto using affinely_plainly_and. Qed. +Lemma affinely_plainly_if_or p P Q : â– ?p (P ∨ Q) ⊣⊢ â– ?p P ∨ â– ?p Q. +Proof. destruct p; simpl; auto using affinely_plainly_or. Qed. +Lemma affinely_plainly_if_exist {A} p (Ψ : A → PROP) : + (â– ?p ∃ a, Ψ a) ⊣⊢ ∃ a, â– ?p Ψ a. +Proof. destruct p; simpl; auto using affinely_plainly_exist. Qed. +Lemma affinely_plainly_if_sep_2 p P Q : â– ?p P ∗ â– ?p Q ⊢ â– ?p (P ∗ Q). +Proof. destruct p; simpl; auto using affinely_plainly_sep_2. Qed. +Lemma affinely_plainly_if_sep `{PositiveBI PROP} p P Q : + â– ?p (P ∗ Q) ⊣⊢ â– ?p P ∗ â– ?p Q. +Proof. destruct p; simpl; auto using affinely_plainly_sep. Qed. + +Lemma affinely_plainly_if_idemp p P : â– ?p â– ?p P ⊣⊢ â– ?p P. +Proof. destruct p; simpl; auto using affinely_plainly_idemp. Qed. + +(* Properties of persistent propositions *) +Global Instance Persistent_proper : Proper ((≡) ==> iff) (@Persistent PROP). +Proof. solve_proper. Qed. + +Lemma persistent_persistently_2 P `{!Persistent P} : P ⊢ bi_persistently P. +Proof. done. Qed. +Lemma persistent_persistently P `{!Persistent P, !Absorbing P} : + bi_persistently P ⊣⊢ P. Proof. - intros. by rewrite /Plain {2}(plain P) -plainly_impl_plainly -(plain Q) - (plainly_elim_absorbingly P) absorbing. + apply (anti_symm _); auto using persistent_persistently_2, persistently_elim. Qed. -(* TODO : can we prove this lemma under positivity of the BI (or even - weaker assumptions) ? *) -Global Instance wand_plain `{AffineBI PROP} P Q : - Plain P → Plain Q → Plain (P -∗ Q). + +Lemma persistently_intro P Q `{!Persistent P} : (P ⊢ Q) → P ⊢ bi_persistently Q. +Proof. intros HP. by rewrite (persistent P) HP. Qed. +Lemma persistent_and_affinely_sep_l_1 P Q `{!Persistent P} : + P ∧ Q ⊢ bi_affinely P ∗ Q. Proof. - intros. rewrite /Plain {2}(plain P) wand_impl_plainly -plainly_impl_plainly. - by rewrite -wand_impl_plainly -(plain Q) (plainly_elim P). + rewrite {1}(persistent_persistently_2 P) persistently_and_affinely_sep_l. + by rewrite -affinely_idemp affinely_persistently_elim. Qed. -Global Instance pure_wand_plain φ Q `{!Absorbing Q} : Plain Q → Plain (⌜φ⌠-∗ Q). -Proof. intros ?. rewrite pure_wand_forall. apply _. Qed. -Global Instance sep_plain P Q : Plain P → Plain Q → Plain (P ∗ Q). -Proof. intros. by rewrite /Plain -plainly_sep_2 -!plain. Qed. +Lemma persistent_and_affinely_sep_r_1 P Q `{!Persistent Q} : + P ∧ Q ⊢ P ∗ bi_affinely Q. +Proof. by rewrite !(comm _ P) persistent_and_affinely_sep_l_1. Qed. -Global Instance plainly_plain P : Plain (bi_plainly P). -Proof. by rewrite /Plain plainly_idemp. Qed. -Global Instance persistently_plain P : Plain P → Plain (bi_persistently P). +Lemma persistent_and_affinely_sep_l P Q `{!Persistent P, !Absorbing P} : + P ∧ Q ⊣⊢ bi_affinely P ∗ Q. +Proof. by rewrite -(persistent_persistently P) persistently_and_affinely_sep_l. Qed. +Lemma persistent_and_affinely_sep_r P Q `{!Persistent Q, !Absorbing Q} : + P ∧ Q ⊣⊢ P ∗ bi_affinely Q. +Proof. by rewrite -(persistent_persistently Q) persistently_and_affinely_sep_r. Qed. + +Lemma persistent_and_sep_1 P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} : + P ∧ Q ⊢ P ∗ Q. Proof. - rewrite /Plain=> HP. by rewrite {1}HP plainly_persistently persistently_plainly. + destruct HPQ. + - by rewrite persistent_and_affinely_sep_l_1 affinely_elim. + - by rewrite persistent_and_affinely_sep_r_1 affinely_elim. +Qed. + +Lemma persistent_sep_dup P `{!Persistent P, !Absorbing P} : P ⊣⊢ P ∗ P. +Proof. by rewrite -(persistent_persistently P) -persistently_sep_dup. Qed. + +Lemma persistent_entails_l P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ Q ∗ P. +Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. +Lemma persistent_entails_r P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ P ∗ Q. +Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. + +Lemma persistent_absorbingly_affinely P `{!Persistent P} : + P ⊢ bi_absorbingly (bi_affinely P). +Proof. + by rewrite {1}(persistent_persistently_2 P) -persistently_affinely + persistently_elim_absorbingly. Qed. -Global Instance affinely_plain P : Plain P → Plain (bi_affinely P). -Proof. rewrite /bi_affinely. apply _. Qed. -Global Instance absorbingly_plain P : Plain P → Plain (bi_absorbingly P). -Proof. rewrite /bi_absorbingly. apply _. Qed. -Global Instance from_option_palin {A} P (Ψ : A → PROP) (mx : option A) : - (∀ x, Plain (Ψ x)) → Plain P → Plain (from_option Ψ P mx). -Proof. destruct mx; apply _. Qed. + +Lemma persistent_and_sep_assoc P `{!Persistent P, !Absorbing P} Q R : + P ∧ (Q ∗ R) ⊣⊢ (P ∧ Q) ∗ R. +Proof. by rewrite -(persistent_persistently P) persistently_and_sep_assoc. Qed. + +Lemma impl_wand_2 P `{!Persistent P} Q : (P -∗ Q) ⊢ P → Q. +Proof. apply impl_intro_l. by rewrite persistent_and_sep_1 wand_elim_r. Qed. + +Section persistent_bi_absorbing. + Context `{AffineBI PROP}. + + Lemma persistent_and_sep P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} : + P ∧ Q ⊣⊢ P ∗ Q. + Proof. + destruct HPQ. + - by rewrite -(persistent_persistently P) persistently_and_sep_l. + - by rewrite -(persistent_persistently Q) persistently_and_sep_r. + Qed. + + Lemma impl_wand P `{!Persistent P} Q : (P → Q) ⊣⊢ (P -∗ Q). + Proof. apply (anti_symm _); auto using impl_wand_1, impl_wand_2. Qed. +End persistent_bi_absorbing. (* Properties of plain propositions *) +Global Instance Plain_proper : Proper ((≡) ==> iff) (@Plain PROP). +Proof. solve_proper. Qed. + Lemma plain_plainly_2 P `{!Plain P} : P ⊢ bi_plainly P. Proof. done. Qed. Lemma plain_plainly P `{!Plain P, !Absorbing P} : bi_plainly P ⊣⊢ P. @@ -1687,9 +1644,64 @@ Proof. by rewrite plainly_pure True_impl. Qed. -(* Persistence *) -Global Instance Persistent_proper : Proper ((≡) ==> iff) (@Persistent PROP). -Proof. solve_proper. Qed. +(* Affine instances *) +Global Instance emp_affine_l : Affine (emp%I : PROP). +Proof. by rewrite /Affine. Qed. +Global Instance and_affine_l P Q : Affine P → Affine (P ∧ Q). +Proof. rewrite /Affine=> ->; auto. Qed. +Global Instance and_affine_r P Q : Affine Q → Affine (P ∧ Q). +Proof. rewrite /Affine=> ->; auto. Qed. +Global Instance or_affine P Q : Affine P → Affine Q → Affine (P ∨ Q). +Proof. rewrite /Affine=> -> ->; auto. Qed. +Global Instance forall_affine `{Inhabited A} (Φ : A → PROP) : + (∀ x, Affine (Φ x)) → Affine (∀ x, Φ x). +Proof. intros. rewrite /Affine (forall_elim inhabitant). apply: affine. Qed. +Global Instance exist_affine {A} (Φ : A → PROP) : + (∀ x, Affine (Φ x)) → Affine (∃ x, Φ x). +Proof. rewrite /Affine=> H. apply exist_elim=> a. by rewrite H. Qed. + +Global Instance sep_affine P Q : Affine P → Affine Q → Affine (P ∗ Q). +Proof. rewrite /Affine=>-> ->. by rewrite left_id. Qed. +Global Instance affinely_affine P : Affine (bi_affinely P). +Proof. rewrite /bi_affinely. apply _. Qed. + +(* Absorbing instances *) +Global Instance pure_absorbing φ : Absorbing (⌜φâŒ%I : PROP). +Proof. by rewrite /Absorbing absorbingly_pure. Qed. +Global Instance and_absorbing P Q : Absorbing P → Absorbing Q → Absorbing (P ∧ Q). +Proof. intros. by rewrite /Absorbing absorbingly_and !absorbing. Qed. +Global Instance or_absorbing P Q : Absorbing P → Absorbing Q → Absorbing (P ∨ Q). +Proof. intros. by rewrite /Absorbing absorbingly_or !absorbing. Qed. +Global Instance forall_absorbing {A} (Φ : A → PROP) : + (∀ x, Absorbing (Φ x)) → Absorbing (∀ x, Φ x). +Proof. rewrite /Absorbing=> ?. rewrite absorbingly_forall. auto using forall_mono. Qed. +Global Instance exist_absorbing {A} (Φ : A → PROP) : + (∀ x, Absorbing (Φ x)) → Absorbing (∃ x, Φ x). +Proof. rewrite /Absorbing=> ?. rewrite absorbingly_exist. auto using exist_mono. Qed. + +Global Instance internal_eq_absorbing {A : ofeT} (x y : A) : + Absorbing (x ≡ y : PROP)%I. +Proof. by rewrite /Absorbing absorbingly_internal_eq. Qed. + +Global Instance sep_absorbing_l P Q : Absorbing P → Absorbing (P ∗ Q). +Proof. intros. by rewrite /Absorbing -absorbingly_sep_l absorbing. Qed. +Global Instance sep_absorbing_r P Q : Absorbing Q → Absorbing (P ∗ Q). +Proof. intros. by rewrite /Absorbing -absorbingly_sep_r absorbing. Qed. + +Global Instance wand_absorbing P Q : Absorbing Q → Absorbing (P -∗ Q). +Proof. intros. by rewrite /Absorbing absorbingly_wand !absorbing -absorbingly_intro. Qed. + +Global Instance absorbingly_absorbing P : Absorbing (bi_absorbingly P). +Proof. rewrite /bi_absorbingly. apply _. Qed. +Global Instance plainly_absorbing P : Absorbing (bi_plainly P). +Proof. by rewrite /Absorbing /bi_absorbingly comm plainly_absorbing. Qed. +Global Instance persistently_absorbing P : Absorbing (bi_persistently P). +Proof. by rewrite /Absorbing absorbingly_persistently. Qed. + +(* Persistence instances *) +(* Not an instance, see the bottom of this file *) +Lemma plain_persistent P : Plain P → Persistent P. +Proof. intros. by rewrite /Persistent -plainly_elim_persistently. Qed. Global Instance pure_persistent φ : Persistent (⌜φâŒ%I : PROP). Proof. by rewrite /Persistent persistently_pure. Qed. @@ -1752,82 +1764,62 @@ Global Instance from_option_persistent {A} P (Ψ : A → PROP) (mx : option A) : (∀ x, Persistent (Ψ x)) → Persistent P → Persistent (from_option Ψ P mx). Proof. destruct mx; apply _. Qed. -(* Not an instance, see the bottom of this file *) -Lemma plain_persistent P : Plain P → Persistent P. -Proof. intros. by rewrite /Persistent -plainly_elim_persistently. Qed. - -(* Properties of persistent propositions *) -Lemma persistent_persistently_2 P `{!Persistent P} : P ⊢ bi_persistently P. -Proof. done. Qed. -Lemma persistent_persistently P `{!Persistent P, !Absorbing P} : - bi_persistently P ⊣⊢ P. +(* Plainness instances *) +Global Instance pure_plain φ : Plain (⌜φâŒ%I : PROP). +Proof. by rewrite /Plain plainly_pure. Qed. +Global Instance emp_plain : Plain (emp%I : PROP). +Proof. apply plainly_emp_intro. Qed. +Global Instance and_plain P Q : Plain P → Plain Q → Plain (P ∧ Q). +Proof. intros. by rewrite /Plain plainly_and -!plain. Qed. +Global Instance or_plain P Q : Plain P → Plain Q → Plain (P ∨ Q). +Proof. intros. by rewrite /Plain plainly_or -!plain. Qed. +Global Instance forall_plain {A} (Ψ : A → PROP) : + (∀ x, Plain (Ψ x)) → Plain (∀ x, Ψ x). Proof. - apply (anti_symm _); auto using persistent_persistently_2, persistently_elim. + intros. rewrite /Plain plainly_forall. apply forall_mono=> x. by rewrite -plain. Qed. - -Lemma persistently_intro P Q `{!Persistent P} : (P ⊢ Q) → P ⊢ bi_persistently Q. -Proof. intros HP. by rewrite (persistent P) HP. Qed. -Lemma persistent_and_affinely_sep_l_1 P Q `{!Persistent P} : - P ∧ Q ⊢ bi_affinely P ∗ Q. +Global Instance exist_plain {A} (Ψ : A → PROP) : + (∀ x, Plain (Ψ x)) → Plain (∃ x, Ψ x). Proof. - rewrite {1}(persistent_persistently_2 P) persistently_and_affinely_sep_l. - by rewrite -affinely_idemp affinely_persistently_elim. + intros. rewrite /Plain plainly_exist. apply exist_mono=> x. by rewrite -plain. Qed. -Lemma persistent_and_affinely_sep_r_1 P Q `{!Persistent Q} : - P ∧ Q ⊢ P ∗ bi_affinely Q. -Proof. by rewrite !(comm _ P) persistent_and_affinely_sep_l_1. Qed. -Lemma persistent_and_affinely_sep_l P Q `{!Persistent P, !Absorbing P} : - P ∧ Q ⊣⊢ bi_affinely P ∗ Q. -Proof. by rewrite -(persistent_persistently P) persistently_and_affinely_sep_l. Qed. -Lemma persistent_and_affinely_sep_r P Q `{!Persistent Q, !Absorbing Q} : - P ∧ Q ⊣⊢ P ∗ bi_affinely Q. -Proof. by rewrite -(persistent_persistently Q) persistently_and_affinely_sep_r. Qed. +Global Instance internal_eq_plain {A : ofeT} (a b : A) : + Plain (a ≡ b : PROP)%I. +Proof. by intros; rewrite /Plain plainly_internal_eq. Qed. -Lemma persistent_and_sep_1 P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} : - P ∧ Q ⊢ P ∗ Q. +Global Instance impl_plain P Q : + Absorbing P → Plain P → Plain Q → Plain (P → Q). Proof. - destruct HPQ. - - by rewrite persistent_and_affinely_sep_l_1 affinely_elim. - - by rewrite persistent_and_affinely_sep_r_1 affinely_elim. + intros. by rewrite /Plain {2}(plain P) -plainly_impl_plainly -(plain Q) + (plainly_elim_absorbingly P) absorbing. Qed. - -Lemma persistent_sep_dup P `{!Persistent P, !Absorbing P} : P ⊣⊢ P ∗ P. -Proof. by rewrite -(persistent_persistently P) -persistently_sep_dup. Qed. - -Lemma persistent_entails_l P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ Q ∗ P. -Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. -Lemma persistent_entails_r P Q `{!Persistent Q} : (P ⊢ Q) → P ⊢ P ∗ Q. -Proof. intros. rewrite -persistent_and_sep_1; auto. Qed. - -Lemma persistent_absorbingly_affinely P `{!Persistent P} : - P ⊢ bi_absorbingly (bi_affinely P). +(* TODO : can we prove this lemma under positivity of the BI (or even + weaker assumptions) ? *) +Global Instance wand_plain `{AffineBI PROP} P Q : + Plain P → Plain Q → Plain (P -∗ Q). Proof. - by rewrite {1}(persistent_persistently_2 P) -persistently_affinely - persistently_elim_absorbingly. + intros. rewrite /Plain {2}(plain P) wand_impl_plainly -plainly_impl_plainly. + by rewrite -wand_impl_plainly -(plain Q) (plainly_elim P). Qed. +Global Instance pure_wand_plain φ Q `{!Absorbing Q} : Plain Q → Plain (⌜φ⌠-∗ Q). +Proof. intros ?. rewrite pure_wand_forall. apply _. Qed. +Global Instance sep_plain P Q : Plain P → Plain Q → Plain (P ∗ Q). +Proof. intros. by rewrite /Plain -plainly_sep_2 -!plain. Qed. -Lemma persistent_and_sep_assoc P `{!Persistent P, !Absorbing P} Q R : - P ∧ (Q ∗ R) ⊣⊢ (P ∧ Q) ∗ R. -Proof. by rewrite -(persistent_persistently P) persistently_and_sep_assoc. Qed. - -Lemma impl_wand_2 P `{!Persistent P} Q : (P -∗ Q) ⊢ P → Q. -Proof. apply impl_intro_l. by rewrite persistent_and_sep_1 wand_elim_r. Qed. - -Section persistent_bi_absorbing. - Context `{AffineBI PROP}. - - Lemma persistent_and_sep P Q `{HPQ : !TCOr (Persistent P) (Persistent Q)} : - P ∧ Q ⊣⊢ P ∗ Q. - Proof. - destruct HPQ. - - by rewrite -(persistent_persistently P) persistently_and_sep_l. - - by rewrite -(persistent_persistently Q) persistently_and_sep_r. - Qed. - - Lemma impl_wand P `{!Persistent P} Q : (P → Q) ⊣⊢ (P -∗ Q). - Proof. apply (anti_symm _); auto using impl_wand_1, impl_wand_2. Qed. -End persistent_bi_absorbing. +Global Instance plainly_plain P : Plain (bi_plainly P). +Proof. by rewrite /Plain plainly_idemp. Qed. +Global Instance persistently_plain P : Plain P → Plain (bi_persistently P). +Proof. + rewrite /Plain=> HP. by rewrite {1}HP plainly_persistently persistently_plainly. +Qed. +Global Instance affinely_plain P : Plain P → Plain (bi_affinely P). +Proof. rewrite /bi_affinely. apply _. Qed. +Global Instance absorbingly_plain P : Plain P → Plain (bi_absorbingly P). +Proof. rewrite /bi_absorbingly. apply _. Qed. +Global Instance from_option_palin {A} P (Ψ : A → PROP) (mx : option A) : + (∀ x, Plain (Ψ x)) → Plain P → Plain (from_option Ψ P mx). +Proof. destruct mx; apply _. Qed. (* For big ops *) Global Instance bi_and_monoid : Monoid (@bi_and PROP) := -- GitLab