diff --git a/docs/algebra.tex b/docs/algebra.tex index 3ba0967042888774ba91ee1af53f50d672ba8acc..adf798b09a2d2bd68fbde99a67c76b22b8e09708 100644 --- a/docs/algebra.tex +++ b/docs/algebra.tex @@ -53,6 +53,16 @@ In particular: The function space $(-) \nfn (-)$ is a locally non-expansive bifunctor. Note that the composition of non-expansive (bi)functors is non-expansive, and the composition of a non-expansive and a contractive (bi)functor is contractive. +One very important OFE is the OFE of \emph{step-indexed propositions}: +For every step-index, such a proposition either holds or does not hold. +Moreover, if a propositions holds for some $n$, it also has to hold for all smaller step-indices. +\begin{align*} + \SProp \eqdef{}& \psetdown{\nat} \\ + \eqdef{}& \setComp{X \in \pset{\nat}}{ \All n, m. n \geq m \Ra n \in X \Ra m \in X } \\ + X \nequiv{n} Y \eqdef{}& \All m \leq n. m \in X \Lra m \in Y \\ + X \nincl{n} Y \eqdef{}& \All m \leq n. m \in X \Ra m \in Y +\end{align*} + \subsection{COFE} COFEs are \emph{complete OFEs}, which means that we can take limits of arbitrary chains. @@ -79,12 +89,14 @@ For once, every \emph{contractive function} $f : \ofe \to \cofeB$ where $\cofeB$ This also holds if $f^k$ is contractive for an arbitrary $k$. Furthermore, by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}, every contractive (bi)functor from $\COFEs$ to $\COFEs$ has a unique\footnote{Uniqueness is not proven in Coq.} fixed-point. +$\SProp$ as defined above is complete, \ie it is a COFE. + \subsection{RA} \begin{defn} A \emph{resource algebra} (RA) is a tuple \\ - $(\monoid, \mval \subseteq \monoid, \mcore{{-}}: + $(\monoid, \mvalFull : \monoid \to \mProp, \mcore{{-}}: \monoid \to \maybe\monoid, (\mtimes) : \monoid \times \monoid \to \monoid)$ satisfying: \begin{align*} \All \melt, \meltB, \meltC.& (\melt \mtimes \meltB) \mtimes \meltC = \melt \mtimes (\meltB \mtimes \meltC) \tagH{ra-assoc} \\ @@ -92,16 +104,19 @@ Furthermore, by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkeda \All \melt.& \mcore\melt \in \monoid \Ra \mcore\melt \mtimes \melt = \melt \tagH{ra-core-id} \\ \All \melt.& \mcore\melt \in \monoid \Ra \mcore{\mcore\melt} = \mcore\melt \tagH{ra-core-idem} \\ \All \melt, \meltB.& \mcore\melt \in \monoid \land \melt \mincl \meltB \Ra \mcore\meltB \in \monoid \land \mcore\melt \mincl \mcore\meltB \tagH{ra-core-mono} \\ - \All \melt, \meltB.& (\melt \mtimes \meltB) \in \mval \Ra \melt \in \mval \tagH{ra-valid-op} \\ + \All \melt, \meltB.& \mvalFull(\melt \mtimes \meltB) \Ra \mvalFull(\melt) \tagH{ra-valid-op} \\ \text{where}\qquad %\qquad\\ \maybe\monoid \eqdef{}& \monoid \uplus \set{\mnocore} \qquad\qquad\qquad \melt^? \mtimes \mnocore \eqdef \mnocore \mtimes \melt^? \eqdef \melt^? \\ \melt \mincl \meltB \eqdef{}& \Exists \meltC \in \monoid. \meltB = \melt \mtimes \meltC \tagH{ra-incl} \end{align*} \end{defn} -\noindent +Here, $\mProp$ is the set of (meta-level) propositions. +Think of \texttt{Prop} in Coq or $\mathbb{B}$ in classical mathematics. + RAs are closely related to \emph{Partial Commutative Monoids} (PCMs), with two key differences: \begin{enumerate} -\item The composition operation on RAs is total (as opposed to the partial composition operation of a PCM), but there is a specific subset $\mval$ of \emph{valid} elements that is compatible with the composition operation (\ruleref{ra-valid-op}). +\item The composition operation on RAs is total (as opposed to the partial composition operation of a PCM), but there is a specific subset of \emph{valid} elements that is compatible with the composition operation (\ruleref{ra-valid-op}). +These valid elements are identified by the \emph{validity predicate} $\mvalFull$. This take on partiality is necessary when defining the structure of \emph{higher-order} ghost state, CMRAs, in the next subsection. @@ -122,7 +137,7 @@ Notice also that the core of an RA is a strict generalization of the unit that a \begin{defn} It is possible to do a \emph{frame-preserving update} from $\melt \in \monoid$ to $\meltsB \subseteq \monoid$, written $\melt \mupd \meltsB$, if - \[ \All \maybe{\melt_\f} \in \maybe\monoid. \melt \mtimes \maybe{\melt_\f} \in \mval \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \maybe{\melt_\f} \in \mval \] + \[ \All \maybe{\melt_\f} \in \maybe\monoid. \melt \mtimes \mvalFull(\maybe{\melt_\f}) \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \mvalFull(\maybe{\melt_\f}) \] We further define $\melt \mupd \meltB \eqdef \melt \mupd \set\meltB$. \end{defn} @@ -134,17 +149,15 @@ Since Iris ensures that the global ghost state is valid, this means that we can \subsection{CMRA} \begin{defn} - A \emph{CMRA} is a tuple $(\monoid : \OFEs, (\mval_n \subseteq \monoid)_{n \in \nat},\\ \mcore{{-}}: \monoid \nfn \maybe\monoid, (\mtimes) : \monoid \times \monoid \nfn \monoid)$ satisfying: + A \emph{CMRA} is a tuple $(\monoid : \OFEs, \mval : \monoid \nfn \SProp, \mcore{{-}}: \monoid \nfn \maybe\monoid,\\ (\mtimes) : \monoid \times \monoid \nfn \monoid)$ satisfying: \begin{align*} - \All n, \melt, \meltB.& \melt \nequiv{n} \meltB \land \melt\in\mval_n \Ra \meltB\in\mval_n \tagH{cmra-valid-ne} \\ - \All n, m.& n \geq m \Ra \mval_n \subseteq \mval_m \tagH{cmra-valid-mono} \\ \All \melt, \meltB, \meltC.& (\melt \mtimes \meltB) \mtimes \meltC = \melt \mtimes (\meltB \mtimes \meltC) \tagH{cmra-assoc} \\ \All \melt, \meltB.& \melt \mtimes \meltB = \meltB \mtimes \melt \tagH{cmra-comm} \\ \All \melt.& \mcore\melt \in \monoid \Ra \mcore\melt \mtimes \melt = \melt \tagH{cmra-core-id} \\ \All \melt.& \mcore\melt \in \monoid \Ra \mcore{\mcore\melt} = \mcore\melt \tagH{cmra-core-idem} \\ \All \melt, \meltB.& \mcore\melt \in \monoid \land \melt \mincl \meltB \Ra \mcore\meltB \in \monoid \land \mcore\melt \mincl \mcore\meltB \tagH{cmra-core-mono} \\ - \All n, \melt, \meltB.& (\melt \mtimes \meltB) \in \mval_n \Ra \melt \in \mval_n \tagH{cmra-valid-op} \\ - \All n, \melt, \meltB_1, \meltB_2.& \omit\rlap{$\melt \in \mval_n \land \melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \Ra {}$} \\ + \All \melt, \meltB.& \mval(\melt \mtimes \meltB) \subseteq \mval(\melt) \tagH{cmra-valid-op} \\ + \All n, \melt, \meltB_1, \meltB_2.& \omit\rlap{$n \in \mval(\melt) \land \melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \Ra {}$} \\ &\Exists \meltC_1, \meltC_2. \melt = \meltC_1 \mtimes \meltC_2 \land \meltC_1 \nequiv{n} \meltB_1 \land \meltC_2 \nequiv{n} \meltB_2 \tagH{cmra-extend} \\ \text{where}\qquad\qquad\\ \melt \mincl \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{cmra-incl} \\ @@ -154,8 +167,8 @@ Since Iris ensures that the global ghost state is valid, this means that we can This is a natural generalization of RAs over OFEs. All operations have to be non-expansive, and the validity predicate $\mval$ can now also depend on the step-index. -We define the plain $\mval$ as the ``limit'' of the $\mval_n$: -\[ \mval \eqdef \bigcap_{n \in \nat} \mval_n \] +We define the plain $\mvalFull$ as the ``limit'' of the step-indexed approximation: +\[ \mvalFull(\melt) \eqdef \All n. n \in \mval(\melt) \] \paragraph{The extension axiom (\ruleref{cmra-extend}).} Notice that the existential quantification in this axiom is \emph{constructive}, \ie it is a sigma type in Coq. @@ -184,7 +197,7 @@ This operation is needed to prove that $\later$ commutes with separating conjunc \begin{defn} An element $\munit$ of a CMRA $\monoid$ is called the \emph{unit} of $\monoid$ if it satisfies the following conditions: \begin{enumerate}[itemsep=0pt] - \item $\munit$ is valid: \\ $\All n. \munit \in \mval_n$ + \item $\munit$ is valid: \\ $\All n. n \in \mval(\munit)$ \item $\munit$ is a left-identity of the operation: \\ $\All \melt \in M. \munit \mtimes \melt = \melt$ \item $\munit$ is its own core: \\ $\mcore\munit = \munit$ @@ -197,7 +210,7 @@ This operation is needed to prove that $\later$ commutes with separating conjunc \begin{defn} It is possible to do a \emph{frame-preserving update} from $\melt \in \monoid$ to $\meltsB \subseteq \monoid$, written $\melt \mupd \meltsB$, if - \[ \All n, \maybe{\melt_\f}. \melt \mtimes \maybe{\melt_\f} \in \mval_n \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \maybe{\melt_\f} \in \mval_n \] + \[ \All n, \maybe{\melt_\f}. n \in \mval(\melt \mtimes \maybe{\melt_\f}) \Ra \Exists \meltB \in \meltsB. n \in\mval(\meltB \mtimes \maybe{\melt_\f}) \] We further define $\melt \mupd \meltB \eqdef \melt \mupd \set\meltB$. \end{defn} @@ -208,7 +221,7 @@ Note that for RAs, this and the RA-based definition of a frame-preserving update \begin{enumerate}[itemsep=0pt] \item $\monoid$ is a discrete COFE \item $\mval$ ignores the step-index: \\ - $\All \melt \in \monoid. \melt \in \mval_0 \Ra \All n, \melt \in \mval_n$ + $\All \melt \in \monoid. 0 \in \mval(\melt) \Ra \All n. n \in \mval(\melt)$ \end{enumerate} \end{defn} Note that every RA is a discrete CMRA, by picking the discrete COFE for the equivalence relation. @@ -223,7 +236,7 @@ Furthermore, discrete CMRAs can be turned into RAs by ignoring their COFE struct \item $f$ commutes with the core:\\ $\All \melt \in \monoid_1. \mcore{f(\melt)} = f(\mcore{\melt})$ \item $f$ preserves validity: \\ - $\All n, \melt \in \monoid_1. \melt \in \mval_n \Ra f(\melt) \in \mval_n$ + $\All n, \melt \in \monoid_1. n \in \mval(\melt) \Ra n \in \mval(f(\melt))$ \end{enumerate} \end{defn} diff --git a/docs/constructions.tex b/docs/constructions.tex index 7290dcf39478ff92248f1ed9f096dc9c92131141..890972fc3ffcbbe47347e17317c4b98d85d3d525 100644 --- a/docs/constructions.tex +++ b/docs/constructions.tex @@ -21,32 +21,32 @@ $\latert(-)$ is a locally \emph{contractive} functor from $\OFEs$ to $\OFEs$. Given a CMRA $\monoid$, we define the COFE $\UPred(\monoid)$ of \emph{uniform predicates} over $\monoid$ as follows: \begin{align*} - \UPred(\monoid) \eqdef{} \setComp{\pred: \nat \times \monoid \to \mProp}{ - \begin{inbox}[c] - (\All n, x, y. \pred(n, x) \land x \nequiv{n} y \Ra \pred(n, y)) \land {}\\ - (\All n, m, x, y. \pred(n, x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra \pred(m, y)) - \end{inbox} -} +\monoid \monnra \SProp \eqdef{}& \setComp{\pred: \monoid \nfn \SProp} +{\All n, \melt, \meltB. \melt \mincl[n] \meltB \Ra \pred(\melt) \nincl{n} \pred(\meltB)} \\ + \UPred(\monoid) \eqdef{}& \faktor{\monoid \monnra \SProp}{\equiv} \\ + \pred \equiv \predB \eqdef{}& \All m, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff m \in \predB(\melt)) \\ + \pred \nequiv{n} \predB \eqdef{}& \All m \le n, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff m \in \predB(\melt)) \end{align*} -where $\mProp$ is the set of meta-level propositions, \eg Coq's \texttt{Prop}. +You can think of uniform predicates as monotone, step-indexed predicates over a CMRA that ``ignore'' invalid elements (as defined by the quotient). + $\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$. -One way to understand this definition is to re-write it a little. -We start by defining the COFE of \emph{step-indexed propositions}: For every step-index, the proposition either holds or does not hold. -\begin{align*} - \SProp \eqdef{}& \psetdown{\nat} \\ - \eqdef{}& \setComp{X \in \pset{\nat}}{ \All n, m. n \geq m \Ra n \in X \Ra m \in X } \\ - X \nequiv{n} Y \eqdef{}& \All m \leq n. m \in X \Lra m \in Y -\end{align*} -Notice that this notion of $\SProp$ is already hidden in the validity predicate $\mval_n$ of a CMRA: -We could equivalently require every CMRA to define $\mval_{-}(-) : \monoid \nfn \SProp$, replacing \ruleref{cmra-valid-ne} and \ruleref{cmra-valid-mono}. +It is worth noting that the above quotient admits canonical +representatives. More precisely, one can show that every +equivalence class contains exactly one element $P_0$ such that: +\[ \All n, \melt. (\mval(\melt) \nincl{n} P_0(\melt)) \Ra n \in P_0(\melt) \tagH{UPred-canonical} \] +Intuitively, this says that $P_0$ trivially holds whenever the resource is invalid. +Starting from any element $P$, one can find this canonical +representative by choosing $P_0(\melt) := \setComp{n}{n \in \mval(\melt) \Ra n \in P(\melt)}$. + +Hence, as an alternative definition of $\UPred$, we could use the set +of canonical representatives. This alternative definition would +save us from using a quotient. However, the definitions of the various +connectives would get more complicated, because we have to make sure +they all verify \ruleref{UPred-canonical}, which sometimes requires some adjustments. We +would moreover need to prove one more property for every logical +connective. -Now we can rewrite $\UPred(\monoid)$ as monotone step-indexed predicates over $\monoid$, where the definition of a ``monotone'' function here is a little funny. -\begin{align*} - \UPred(\monoid) \cong{}& \monoid \monra \SProp \\ - \eqdef{}& \setComp{\pred: \monoid \nfn \SProp}{\All n, m, x, y. n \in \pred(x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra m \in \pred(y)} -\end{align*} -The reason we chose the first definition is that it is easier to work with in Coq. \clearpage \section{RA and CMRA constructions} @@ -69,16 +69,16 @@ Frame-preserving updates on the $M_i$ lift to the product: The \emph{sum CMRA} $\monoid_1 \csumm \monoid_2$ for any CMRAs $\monoid_1$ and $\monoid_2$ is defined as (again, we use a datatype-like notation): \begin{align*} \monoid_1 \csumm \monoid_2 \eqdef{}& \cinl(\melt_1:\monoid_1) \mid \cinr(\melt_2:\monoid_2) \mid \mundef \\ - \mval_n \eqdef{}& \setComp{\cinl(\melt_1)}{\melt_1 \in \mval'_n} - \cup \setComp{\cinr(\melt_2)}{\melt_2 \in \mval''_n} \\ + \mval(\mundef) \eqdef{}& \emptyset \\ + \mval(\cinl(\melt)) \eqdef{}& \mval_1(\melt) \\ \cinl(\melt_1) \mtimes \cinl(\meltB_1) \eqdef{}& \cinl(\melt_1 \mtimes \meltB_1) \\ % \munit \mtimes \ospending \eqdef{}& \ospending \mtimes \munit \eqdef \ospending \\ % \munit \mtimes \osshot(\melt) \eqdef{}& \osshot(\melt) \mtimes \munit \eqdef \osshot(\melt) \\ \mcore{\cinl(\melt_1)} \eqdef{}& \begin{cases}\mnocore & \text{if $\mcore{\melt_1} = \mnocore$} \\ \cinl({\mcore{\melt_1}}) & \text{otherwise} \end{cases} \end{align*} -The composition and core for $\cinr$ are defined symmetrically. +Above, $\mval_1$ refers to the validity of $\monoid_1$. +The validity, composition and core for $\cinr$ are defined symmetrically. The remaining cases of the composition and core are all $\mundef$. -Above, $\mval'$ refers to the validity of $\monoid_1$, and $\mval''$ to the validity of $\monoid_2$. Notice that we added the artificial ``invalid'' (or ``undefined'') element $\mundef$ to this CMRA just in order to make certain compositions of elements (in this case, $\cinl$ and $\cinr$) invalid. @@ -99,7 +99,7 @@ We obtain the following frame-preserving updates, as well as their symmetric cou {\cinl(\melt) \mupd \setComp{ \cinl(\meltB)}{\meltB \in \meltsB}} \inferH{sum-swap} - {\All \melt_\f, n. \melt \mtimes \melt_\f \notin \mval'_n \and \meltB \in \mval''} + {\All \melt_\f \in M, n. n \notin \mval(\melt \mtimes \melt_\f) \and \mvalFull(\meltB)} {\cinl(\melt) \mupd \cinr(\meltB)} \end{mathpar} Crucially, the second rule allows us to \emph{swap} the ``side'' of the sum that the CMRA is on if $\mval$ has \emph{no possible frame}. @@ -122,18 +122,18 @@ Given some infinite countable $K$ and some CMRA $\monoid$, the set of finite par We obtain the following frame-preserving updates: \begin{mathpar} \inferH{fpfn-alloc-strong} - {\text{$G$ infinite} \and \melt \in \mval} + {\text{$G$ infinite} \and \mvalFull(\melt)} {\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in G}} \inferH{fpfn-alloc} - {\melt \in \mval} + {\mvalFull(\melt)} {\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in K}} \inferH{fpfn-update} {\melt \mupd_\monoid \meltsB} {\mapinsert i \melt f] \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}} \end{mathpar} -Above, $\mval$ refers to the validity of $\monoid$. +Above, $\mvalFull$ refers to the (full) validity of $\monoid$. $K \fpfn (-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$. @@ -146,7 +146,7 @@ Given some OFE $\cofe$, we define the CMRA $\agm(\cofe)$ as follows: \textnormal{where }& \melt \sim \meltB \eqdef{} \All n. \melt \nequiv{n} \meltB \\ ~\\ % \All n \in {\melt.V}.\, \melt.x \nequiv{n} \meltB.x \\ - \mval_n \eqdef{}& \setComp{\melt \in \agm(\cofe)}{ \All x, y \in \melt. x \nequiv{n} y } \\ + \mval(\melt) \eqdef{}& \setComp{n}{ \All x, y \in \melt. x \nequiv{n} y } \\ \mcore\melt \eqdef{}& \melt \\ \melt \mtimes \meltB \eqdef{}& \melt \cup \meltB \end{align*} @@ -158,11 +158,11 @@ We define a non-expansive injection $\aginj$ into $\agm(\cofe)$ as follows: \[ \aginj(x) \eqdef \set{x} \] There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can show the following: \begin{mathpar} - \axiomH{ag-val}{\aginj(x) \in \mval_n} + \axiomH{ag-val}{\mvalFull(\aginj(x))} \axiomH{ag-dup}{\aginj(x) = \aginj(x)\mtimes\aginj(x)} - \axiomH{ag-agree}{\aginj(x) \mtimes \aginj(y) \in \mval_n \Lra x \nequiv{n} y} + \axiomH{ag-agree}{n \in \mval(\aginj(x) \mtimes \aginj(y)) \Ra x \nequiv{n} y} \end{mathpar} @@ -171,7 +171,7 @@ There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can Given an OFE $\cofe$, we define a CMRA $\exm(\cofe)$ such that at most one $x \in \cofe$ can be owned: \begin{align*} \exm(\cofe) \eqdef{}& \exinj(\cofe) \mid \mundef \\ - \mval_n \eqdef{}& \setComp{\melt\in\exm(\cofe)}{\melt \neq \mundef} + \mval(\melt) \eqdef{}& \setComp{n}{\melt \neq \mundef} \end{align*} All cases of composition go to $\mundef$. \begin{align*} @@ -281,7 +281,7 @@ We assume that $M$ has a unit $\munit$, and hence its core is total. (If $M$ is an exclusive monoid, the construction is very similar to a half-ownership monoid with two asymmetric halves.) \begin{align*} \authm(M) \eqdef{}& \maybe{\exm(M)} \times M \\ -\mval_n \eqdef{}& \setComp{ (x, \meltB) \in \authm(M) }{ \meltB \in \mval_n \land (x = \mnocore \lor \Exists \melt. x = \exinj(\melt) \land \meltB \mincl_n \melt) } \\ +\mval( (x, \meltB ) ) \eqdef{}& \setComp{ n }{ n \in \mval(\meltB) \land (x = \mnocore \lor \Exists \melt. x = \exinj(\melt) \land \meltB \mincl_n \melt) } \\ (x_1, \meltB_1) \mtimes (x_2, \meltB_2) \eqdef{}& (x_1 \mtimes x_2, \meltB_2 \mtimes \meltB_2) \\ \mcore{(x, \meltB)} \eqdef{}& (\mnocore, \mcore\meltB) \\ (x_1, \meltB_1) \nequiv{n} (x_2, \meltB_2) \eqdef{}& x_1 \nequiv{n} x_2 \land \meltB_1 \nequiv{n} \meltB_2 @@ -295,7 +295,7 @@ The frame-preserving update involves the notion of a \emph{local update}: \newcommand\lupd{\stackrel{\mathrm l}{\mupd}} \begin{defn} It is possible to do a \emph{local update} from $\melt_1$ and $\meltB_1$ to $\melt_2$ and $\meltB_2$, written $(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)$, if - \[ \All n, \maybe{\melt_\f}. \melt_1 \in \mval_n \land \melt_1 \nequiv{n} \meltB_1 \mtimes \maybe{\melt_\f} \Ra \melt_2 \in \mval_n \land \melt_2 \nequiv{n} \meltB_2 \mtimes \maybe{\melt_\f} \] + \[ \All n, \maybe{\melt_\f}. n \in \mval(\melt_1) \land \melt_1 \nequiv{n} \meltB_1 \mtimes \maybe{\melt_\f} \Ra n \in \mval(\melt_2) \land \melt_2 \nequiv{n} \meltB_2 \mtimes \maybe{\melt_\f} \] \end{defn} In other words, the idea is that for every possible frame $\maybe{\melt_\f}$ completing $\meltB_1$ to $\melt_1$, the same frame also completes $\meltB_2$ to $\melt_2$. @@ -327,7 +327,7 @@ We further define \emph{closed} sets of states (given a particular set of tokens The STS RA is defined as follows \begin{align*} \monoid \eqdef{}& \STSauth(s:\STSS, T:\wp(\STST) \mid \STSL(s) \disj T) \mid{}\\& \STSfrag(S: \wp(\STSS), T: \wp(\STST) \mid \STSclsd(S, T) \land S \neq \emptyset) \mid \mundef \\ - \mval \eqdef{}& \setComp{\melt\in\monoid}{\melt \neq \mundef} \\ + \mvalFull(\melt) \eqdef{}& \melt \neq \mundef \\ \STSfrag(S_1, T_1) \mtimes \STSfrag(S_2, T_2) \eqdef{}& \STSfrag(S_1 \cap S_2, T_1 \cup T_2) \qquad\qquad\qquad \text{if $T_1 \disj T_2$ and $S_1 \cap S_2 \neq \emptyset$} \\ \STSfrag(S, T) \mtimes \STSauth(s, T') \eqdef{}& \STSauth(s, T') \mtimes \STSfrag(S, T) \eqdef \STSauth(s, T \cup T') \qquad \text{if $T \disj T'$ and $s \in S$} \\ \mcore{\STSfrag(S, T)} \eqdef{}& \STSfrag(\upclose(S, \emptyset), \emptyset) \\ diff --git a/docs/iris.sty b/docs/iris.sty index 9ba0f619ee6025bb86dd090ac8e161017be62f73..d55611a86cb493fdd04316b28a7b2dd8c3da113d 100644 --- a/docs/iris.sty +++ b/docs/iris.sty @@ -36,7 +36,7 @@ \newcommand{\upclose}{\mathord{\uparrow}} \newcommand{\ALT}{\ |\ } -\newcommand{\spac}{\,} % a space +\newcommand{\spac}{\hskip 0.2em plus 0.1em} % a space \def\All #1.{\forall #1.\spac}% \def\Exists #1.{\exists #1.\spac}% @@ -117,6 +117,7 @@ \newcommand{\wtt}[2]{#1 : #2} % well-typed term \newcommand{\nequiv}[1]{\ensuremath{\mathrel{\stackrel{#1}{=}}}} +\newcommand{\nincl}[1]{\ensuremath{\mathrel{\stackrel{#1}{\subseteq}}}} \newcommand{\notnequiv}[1]{\ensuremath{\mathrel{\stackrel{#1}{\neq}}}} \newcommand{\nequivset}[2]{\ensuremath{\mathrel{\stackrel{#1}{=}_{#2}}}} \newcommand{\nequivB}[1]{\ensuremath{\mathrel{\stackrel{#1}{\equiv}}}} diff --git a/docs/model.tex b/docs/model.tex index 6100fb39be49d0689d410ad482466b1962b4a34e..a241fdad723f682d21ee3a6bd948f791dd42de01 100644 --- a/docs/model.tex +++ b/docs/model.tex @@ -42,7 +42,7 @@ We are thus going to define the assertions as mapping CMRA elements to sets of s \Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cup \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\ \Sem{\vctx \proves \prop \Ra \propB : \Prop}_\gamma &\eqdef \Lam \melt. \setComp{n}{\begin{aligned} - \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land \meltB \in \mval_m \Ra {} \\ + \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land m \in \mval(\meltB) \Ra {} \\ & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB)\end{aligned}}\\ \Sem{\vctx \proves \All \var : \type. \prop : \Prop}_\gamma &\eqdef \Lam \melt. \setComp{n}{ \All v \in \Sem{\type}. n \in \Sem{\vctx, \var : \type \proves \prop : \Prop}_{\mapinsert \var v \gamma}(\melt) } \\ @@ -54,15 +54,15 @@ We are thus going to define the assertions as mapping CMRA elements to sets of s \\ \Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef \Lam \melt. \setComp{n}{\begin{aligned} - \All m, \meltB.& m \leq n \land \melt\mtimes\meltB \in \mval_m \Ra {} \\ + \All m, \meltB.& m \leq n \land m \in \mval(\melt\mtimes\meltB) \Ra {} \\ & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\ \Sem{\vctx \proves \ownM{\term} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\Sem{\vctx \proves \term : \textlog{M}}_\gamma \mincl[n] \meltB} \\ - \Sem{\vctx \proves \mval(\term) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\Sem{\vctx \proves \term : \textlog{M}}_\gamma \in \mval_n} \\ + \Sem{\vctx \proves \mval(\term) : \Prop}_\gamma &\eqdef \Lam\any. \mval(\Sem{\vctx \proves \term : \textlog{M}}_\gamma) \\ \Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\ \Sem{\vctx \proves \plainly{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\munit) \\ \Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\ \Sem{\vctx \proves \upd\prop : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned} - \All m, \melt'. & m \leq n \land (\melt \mtimes \melt') \in \mval_m \Ra {}\\& \Exists \meltB. (\meltB \mtimes \melt') \in \mval_m \land m \in \Sem{\vctx \proves \prop :\Prop}_\gamma(\meltB) + \All m, \melt'. & m \leq n \land m \in \mval(\melt \mtimes \melt') \Ra {}\\& \Exists \meltB. m \in \mval(\meltB \mtimes \melt') \land m \in \Sem{\vctx \proves \prop :\Prop}_\gamma(\meltB) \end{aligned} } \end{align*} diff --git a/theories/base_logic/double_negation.v b/theories/base_logic/double_negation.v index a27253cd1667f3dcd789eb57fe9e6ec25c65a5ba..edc4289c05a70fac9355a28bbd594a146c9972ee 100644 --- a/theories/base_logic/double_negation.v +++ b/theories/base_logic/double_negation.v @@ -30,11 +30,11 @@ Import uPred. Lemma laterN_big n a x φ: ✓{n} x → a ≤ n → (â–·^a ⌜φâŒ)%I n x → φ. Proof. induction 2 as [| ?? IHle]. - - induction a; repeat (rewrite //= || uPred.unseal). + - induction a; repeat (rewrite //= || uPred.unseal). intros Hlater. apply IHa; auto using cmra_validN_S. - move:Hlater; repeat (rewrite //= || uPred.unseal). + move:Hlater; repeat (rewrite //= || uPred.unseal). - intros. apply IHle; auto using cmra_validN_S. - eapply uPred_closed; eauto using cmra_validN_S. + eapply uPred_mono; eauto using cmra_validN_S. Qed. Lemma laterN_small n a x φ: ✓{n} x → n < a → (â–·^a ⌜φâŒ)%I n x. @@ -46,15 +46,15 @@ Proof. - induction n as [| n IHn]; [| move: IHle]; repeat (rewrite //= || uPred.unseal). red; rewrite //=. intros. - eapply (uPred_closed _ _ (S n)); eauto using cmra_validN_S. + eapply (uPred_mono _ _ (S n)); eauto using cmra_validN_S. Qed. (* It is easy to show that most of the basic properties of bupd that - are used throughout Iris hold for nnupd. + are used throughout Iris hold for nnupd. In fact, the first three properties that follow hold for any modality of the form (- -∗ Q) -∗ Q for arbitrary Q. The situation - here is slightly different, because nnupd is of the form + here is slightly different, because nnupd is of the form ∀ n, (- -∗ (Q n)) -∗ (Q n), but the proofs carry over straightforwardly. *) @@ -77,8 +77,8 @@ Proof. Qed. Lemma nnupd_ownM_updateP x (Φ : M → Prop) : x ~~>: Φ → uPred_ownM x =n=> ∃ y, ⌜Φ y⌠∧ uPred_ownM y. -Proof. - intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal. +Proof. + intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal. intros n y ? Hown a. red; rewrite //= => n' yf ??. inversion Hown as (x'&Hequiv). @@ -87,18 +87,18 @@ Proof. case (decide (a ≤ n')). - intros Hle Hwand. exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' (y' â‹… x'))); eauto. - * rewrite comm -assoc. done. - * rewrite comm -assoc. done. - * eexists. split; eapply uPred_mono; red; rewrite //=; eauto. - - intros; assert (n' < a). omega. + * rewrite comm -assoc. done. + * rewrite comm -assoc. done. + * exists y'. split=>//. by exists x'. + - intros; assert (n' < a). omega. move: laterN_small. uPred.unseal. naive_solver. Qed. (* However, the transitivity property seems to be much harder to - prove. This is surprising, because transitivity does hold for + prove. This is surprising, because transitivity does hold for modalities of the form (- -∗ Q) -∗ Q. What goes wrong when we quantify - now over n? + now over n? *) Remark nnupd_trans P: (|=n=> |=n=> P) ⊢ (|=n=> P). @@ -111,7 +111,7 @@ Proof. (* Oops -- the exponents of the later modality don't match up! *) Abort. -(* Instead, we will need to prove this in the model. We start by showing that +(* Instead, we will need to prove this in the model. We start by showing that nnupd is the limit of a the following sequence: (- -∗ False) - ∗ False, @@ -121,12 +121,12 @@ Abort. Then, it is easy enough to show that each of the uPreds in this sequence is transitive. It turns out that this implies that nnupd is transitive. *) - + (* The definition of the sequence above: *) Fixpoint uPred_nnupd_k {M} k (P: uPred M) : uPred M := ((P -∗ â–·^k False) -∗ â–·^k False) ∧ - match k with + match k with O => True | S k' => uPred_nnupd_k k' P end. @@ -138,11 +138,11 @@ Notation "|=n=>_ k Q" := (uPred_nnupd_k k Q) (* One direction of the limiting process is easy -- nnupd implies nnupd_k for each k *) Lemma nnupd_trunc1 k P: (|=n=> P) ⊢ |=n=>_k P. Proof. - induction k. - - rewrite /uPred_nnupd_k /uPred_nnupd. + induction k. + - rewrite /uPred_nnupd_k /uPred_nnupd. rewrite (forall_elim 0) //= right_id //. - simpl. apply and_intro; auto. - rewrite /uPred_nnupd. + rewrite /uPred_nnupd. rewrite (forall_elim (S k)) //=. Qed. @@ -190,11 +190,10 @@ Lemma nnupd_nnupd_k_dist k P: (|=n=> P)%I ≡{k}≡ (|=n=>_k P)%I. *** intros. exfalso. assert (n ≤ k'). omega. assert (n = S k ∨ n < S k) as [->|] by omega. **** eapply laterN_big; eauto; unseal. eapply HnnP; eauto. - **** move:nnupd_k_elim. unseal. intros Hnnupdk. + **** move:nnupd_k_elim. unseal. intros Hnnupdk. eapply laterN_big; eauto. unseal. eapply (Hnnupdk n k); first omega; eauto. - exists x, x'. split_and!; eauto. eapply uPred_closed; eauto. - eapply cmra_validN_op_l; eauto. + exists x, x'. split_and!; eauto. eapply uPred_mono; eauto. ** intros HP. eapply IHk; auto. move:HP. unseal. intros (?&?); naive_solver. Qed. @@ -204,13 +203,13 @@ Lemma nnupd_k_intro k P: P ⊢ (|=n=>_k P). Proof. induction k; rewrite //= ?right_id. - apply wand_intro_l. apply wand_elim_l. - - apply and_intro; auto. + - apply and_intro; auto. apply wand_intro_l. apply wand_elim_l. Qed. Lemma nnupd_k_mono k P Q: (P ⊢ Q) → (|=n=>_k P) ⊢ (|=n=>_k Q). Proof. - induction k; rewrite //= ?right_id=>HPQ. + induction k; rewrite //= ?right_id=>HPQ. - do 2 (apply wand_mono; auto). - apply and_mono; auto; do 2 (apply wand_mono; auto). Qed. @@ -228,13 +227,13 @@ Lemma nnupd_k_trans k P: (|=n=>_k |=n=>_k P) ⊢ (|=n=>_k P). Proof. revert P. induction k; intros P. - - rewrite //= ?right_id. apply wand_intro_l. + - rewrite //= ?right_id. apply wand_intro_l. rewrite {1}(nnupd_k_intro 0 (P -∗ False)%I) //= ?right_id. apply wand_elim_r. - rewrite {2}(nnupd_k_unfold k P). apply and_intro. * rewrite (nnupd_k_unfold k P). rewrite and_elim_l. rewrite nnupd_k_unfold. rewrite and_elim_l. - apply wand_intro_l. + apply wand_intro_l. rewrite {1}(nnupd_k_intro (S k) (P -∗ â–·^(S k) (False)%I)). rewrite nnupd_k_unfold and_elim_l. apply wand_elim_r. * do 2 rewrite nnupd_k_weaken //. @@ -263,8 +262,8 @@ Proof. case (decide (a ≤ n')). - intros Hle Hwand. exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' x')); eauto. - * rewrite comm. done. - * rewrite comm. done. + * rewrite comm. done. + * rewrite comm. done. - intros; assert (n' < a). omega. move: laterN_small. uPred.unseal. naive_solver. @@ -300,23 +299,23 @@ End classical. Lemma nnupd_dne φ: (|=n=> ⌜¬¬ φ → φâŒ: uPred M)%I. Proof. rewrite /uPred_nnupd. apply forall_intro=>n. - apply wand_intro_l. rewrite ?right_id. + apply wand_intro_l. rewrite ?right_id. assert (∀ φ, ¬¬¬¬φ → ¬¬φ) by naive_solver. assert (Hdne: ¬¬ (¬¬φ → φ)) by naive_solver. split. unseal. intros n' ?? Hupd. case (decide (n' < n)). - intros. move: laterN_small. unseal. naive_solver. - - intros. assert (n ≤ n'). omega. + - intros. assert (n ≤ n'). omega. exfalso. specialize (Hupd n' ε). eapply Hdne. intros Hfal. - eapply laterN_big; eauto. + eapply laterN_big; eauto. unseal. rewrite right_id in Hupd *; naive_solver. Qed. (* Nevertheless, we can prove a weaker form of adequacy (which is equvialent to adequacy under classical axioms) directly without passing through the proofs for bupd: *) Lemma adequacy_helper1 P n k x: - ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> â–· P)%I P (S n + k) x) + ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> â–· P)%I P (S n + k) x) → ¬¬ (∃ x', ✓{n + k} (x') ∧ Nat.iter n (λ P, |=n=> â–· P)%I P (n + k) (x')). Proof. revert k P x. induction n. @@ -326,12 +325,12 @@ Proof. specialize (Hf3 (S k) (S k) ε). rewrite right_id in Hf3 *. unseal. intros Hf3. eapply Hf3; eauto. intros ??? Hx'. rewrite left_id in Hx' *=> Hx'. - unseal. + unseal. assert (n' < S k ∨ n' = S k) as [|] by omega. * intros. move:(laterN_small n' (S k) x' False). rewrite //=. unseal. intros Hsmall. eapply Hsmall; eauto. * subst. intros. exfalso. eapply Hf2. exists x'. split; eauto using cmra_validN_S. - - intros k P x Hx. rewrite ?Nat_iter_S_r. + - intros k P x Hx. rewrite ?Nat_iter_S_r. replace (S (S n) + k) with (S n + (S k)) by omega. replace (S n + k) with (n + (S k)) by omega. intros. eapply IHn. replace (S n + S k) with (S (S n) + k) by omega. eauto. @@ -339,7 +338,7 @@ Proof. Qed. Lemma adequacy_helper2 P n k x: - ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> â–· P)%I P (S n + k) x) + ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> â–· P)%I P (S n + k) x) → ¬¬ (∃ x', ✓{k} (x') ∧ Nat.iter 0 (λ P, |=n=> â–· P)%I P k (x')). Proof. revert x. induction n. diff --git a/theories/base_logic/primitive.v b/theories/base_logic/primitive.v index 1c718f84d5de23bb9ba1dd0ba929504d4e661fef..d2724cedd474bf08d4910d9b4ba9e1e021a08744 100644 --- a/theories/base_logic/primitive.v +++ b/theories/base_logic/primitive.v @@ -35,11 +35,10 @@ Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := ∀ n' x', x ≼ x' → n' ≤ n → ✓{n'} x' → P n' x' → Q n' x' |}. Next Obligation. - intros M P Q n1 x1 x1' HPQ [x2 Hx1'] n2 x3 [x4 Hx3] ?; simpl in *. + intros M P Q n1 n1' x1 x1' HPQ [x2 Hx1'] Hn1 n2 x3 [x4 Hx3] ?; simpl in *. rewrite Hx3 (dist_le _ _ _ _ Hx1'); auto. intros ??. eapply HPQ; auto. exists (x2 â‹… x4); by rewrite assoc. Qed. -Next Obligation. intros M P Q [|n1] [|n2] x; auto with lia. Qed. Definition uPred_impl_aux : seal (@uPred_impl_def). by eexists. Qed. Definition uPred_impl {M} := unseal uPred_impl_aux M. Definition uPred_impl_eq : @@ -71,14 +70,9 @@ Definition uPred_internal_eq_eq: Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := ∃ x1 x2, x ≡{n}≡ x1 â‹… x2 ∧ P n x1 ∧ Q n x2 |}. Next Obligation. - intros M P Q n x y (x1&x2&Hx&?&?) [z Hy]. + intros M P Q n1 n2 x y (x1&x2&Hx&?&?) [z Hy] Hn. exists x1, (x2 â‹… z); split_and?; eauto using uPred_mono, cmra_includedN_l. - by rewrite Hy Hx assoc. -Qed. -Next Obligation. - intros M P Q n1 n2 x (x1&x2&Hx&?&?) ?; rewrite {1}(dist_le _ _ _ _ Hx) // =>?. - exists x1, x2; ofe_subst; split_and!; - eauto using dist_le, uPred_closed, cmra_validN_op_l, cmra_validN_op_r. + eapply dist_le, Hn. by rewrite Hy Hx assoc. Qed. Definition uPred_sep_aux : seal (@uPred_sep_def). by eexists. Qed. Definition uPred_sep {M} := unseal uPred_sep_aux M. @@ -88,11 +82,10 @@ Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := ∀ n' x', n' ≤ n → ✓{n'} (x â‹… x') → P n' x' → Q n' (x â‹… x') |}. Next Obligation. - intros M P Q n x1 x1' HPQ ? n3 x3 ???; simpl in *. - apply uPred_mono with (x1 â‹… x3); + intros M P Q n1 n1' x1 x1' HPQ ? Hn n3 x3 ???; simpl in *. + eapply uPred_mono with n3 (x1 â‹… x3); eauto using cmra_validN_includedN, cmra_monoN_r, cmra_includedN_le. Qed. -Next Obligation. naive_solver. Qed. Definition uPred_wand_aux : seal (@uPred_wand_def). by eexists. Qed. Definition uPred_wand {M} := unseal uPred_wand_aux M. Definition uPred_wand_eq : @@ -103,7 +96,7 @@ Definition uPred_wand_eq : because Iris is afine. The following is easier to work with. *) Program Definition uPred_plainly_def {M} (P : uPred M) : uPred M := {| uPred_holds n x := P n ε |}. -Solve Obligations with naive_solver eauto using uPred_closed, ucmra_unit_validN. +Solve Obligations with naive_solver eauto using uPred_mono, ucmra_unit_validN. Definition uPred_plainly_aux : seal (@uPred_plainly_def). by eexists. Qed. Definition uPred_plainly {M} := unseal uPred_plainly_aux M. Definition uPred_plainly_eq : @@ -114,7 +107,6 @@ Program Definition uPred_persistently_def {M} (P : uPred M) : uPred M := Next Obligation. intros M; naive_solver eauto using uPred_mono, @cmra_core_monoN. Qed. -Next Obligation. naive_solver eauto using uPred_closed, @cmra_core_validN. Qed. Definition uPred_persistently_aux : seal (@uPred_persistently_def). by eexists. Qed. Definition uPred_persistently {M} := unseal uPred_persistently_aux M. Definition uPred_persistently_eq : @@ -123,10 +115,7 @@ Definition uPred_persistently_eq : Program Definition uPred_later_def {M} (P : uPred M) : uPred M := {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}. Next Obligation. - intros M P [|n] x1 x2; eauto using uPred_mono, cmra_includedN_S. -Qed. -Next Obligation. - intros M P [|n1] [|n2] x; eauto using uPred_closed, cmra_validN_S with lia. + intros M P [|n1] [|n2] x1 x2; eauto using uPred_mono, cmra_includedN_S with lia. Qed. Definition uPred_later_aux : seal (@uPred_later_def). by eexists. Qed. Definition uPred_later {M} := unseal uPred_later_aux M. @@ -136,10 +125,9 @@ Definition uPred_later_eq : Program Definition uPred_ownM_def {M : ucmraT} (a : M) : uPred M := {| uPred_holds n x := a ≼{n} x |}. Next Obligation. - intros M a n x1 x [a' Hx1] [x2 ->]. - exists (a' â‹… x2). by rewrite (assoc op) Hx1. + intros M a n1 n2 x1 x [a' Hx1] [x2 Hx] Hn. eapply cmra_includedN_le=>//. + exists (a' â‹… x2). by rewrite Hx(assoc op) Hx1. Qed. -Next Obligation. naive_solver eauto using cmra_includedN_le. Qed. Definition uPred_ownM_aux : seal (@uPred_ownM_def). by eexists. Qed. Definition uPred_ownM {M} := unseal uPred_ownM_aux M. Definition uPred_ownM_eq : @@ -157,13 +145,12 @@ Program Definition uPred_bupd_def {M} (Q : uPred M) : uPred M := {| uPred_holds n x := ∀ k yf, k ≤ n → ✓{k} (x â‹… yf) → ∃ x', ✓{k} (x' â‹… yf) ∧ Q k x' |}. Next Obligation. - intros M Q n x1 x2 HQ [x3 Hx] k yf Hk. + intros M Q n1 n2 x1 x2 HQ [x3 Hx] Hn k yf Hk. rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy. destruct (HQ k (x3 â‹… yf)) as (x'&?&?); [auto|by rewrite assoc|]. exists (x' â‹… x3); split; first by rewrite -assoc. - apply uPred_mono with x'; eauto using cmra_includedN_l. + eauto using uPred_mono, cmra_includedN_l. Qed. -Next Obligation. naive_solver. Qed. Definition uPred_bupd_aux : seal (@uPred_bupd_def). by eexists. Qed. Definition uPred_bupd {M} := unseal uPred_bupd_aux M. Definition uPred_bupd_eq : @uPred_bupd = @uPred_bupd_def := seal_eq uPred_bupd_aux. @@ -380,7 +367,7 @@ Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed. Lemma impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R. Proof. unseal; intros HQ; split=> n x ?? n' x' ????. apply HQ; - naive_solver eauto using uPred_mono, uPred_closed, cmra_included_includedN. + naive_solver eauto using uPred_mono, cmra_included_includedN. Qed. Lemma impl_elim P Q R : (P ⊢ Q → R) → (P ⊢ Q) → P ⊢ R. Proof. by unseal; intros HP HP'; split=> n x ??; apply HP with n x, HP'. Qed. @@ -432,7 +419,7 @@ Lemma wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R. Proof. unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto. exists x, x'; split_and?; auto. - eapply uPred_closed with n; eauto using cmra_validN_op_l. + eapply uPred_mono with n x; eauto using cmra_validN_op_l. Qed. Lemma wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R. Proof. @@ -486,14 +473,14 @@ Qed. Lemma persistently_impl_plainly P Q : (â– P → â–¡ Q) ⊢ â–¡ (â– P → Q). Proof. unseal; split=> /= n x ? HPQ n' x' ????. - eapply uPred_mono with (core x), cmra_included_includedN; auto. + eapply uPred_mono with n' (core x)=>//; [|by apply cmra_included_includedN]. apply (HPQ n' x); eauto using cmra_validN_le. Qed. Lemma plainly_impl_plainly P Q : (â– P → â– Q) ⊢ â– (â– P → Q). Proof. unseal; split=> /= n x ? HPQ n' x' ????. - eapply uPred_mono with ε, cmra_included_includedN; auto. + eapply uPred_mono with n' ε=>//; [|by apply cmra_included_includedN]. apply (HPQ n' x); eauto using cmra_validN_le. Qed. @@ -505,7 +492,7 @@ Qed. Lemma löb P : (â–· P → P) ⊢ P. Proof. unseal; split=> n x ? HP; induction n as [|n IH]; [by apply HP|]. - apply HP, IH, uPred_closed with (S n); eauto using cmra_validN_S. + apply HP, IH, uPred_mono with (S n) x; eauto using cmra_validN_S. Qed. Lemma later_forall_2 {A} (Φ : A → uPred M) : (∀ a, â–· Φ a) ⊢ â–· ∀ a, Φ a. Proof. unseal; by split=> -[|n] x. Qed. @@ -526,8 +513,7 @@ Qed. Lemma later_false_excluded_middle P : â–· P ⊢ â–· False ∨ (â–· False → P). Proof. unseal; split=> -[|n] x ? /= HP; [by left|right]. - intros [|n'] x' ????; [|done]. - eauto using uPred_closed, uPred_mono, cmra_included_includedN. + intros [|n'] x' ????; eauto using uPred_mono, cmra_included_includedN. Qed. Lemma persistently_later P : â–¡ â–· P ⊣⊢ â–· â–¡ P. Proof. by unseal. Qed. @@ -577,7 +563,7 @@ Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed. Lemma bupd_intro P : P ==∗ P. Proof. unseal. split=> n x ? HP k yf ?; exists x; split; first done. - apply uPred_closed with n; eauto using cmra_validN_op_l. + apply uPred_mono with n x; eauto using cmra_validN_op_l. Qed. Lemma bupd_mono P Q : (P ⊢ Q) → (|==> P) ==∗ Q. Proof. @@ -593,8 +579,7 @@ Proof. destruct (HP k (x2 â‹… yf)) as (x'&?&?); eauto. { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. } exists (x' â‹… x2); split; first by rewrite -assoc. - exists x', x2; split_and?; auto. - apply uPred_closed with n; eauto 3 using cmra_validN_op_l, cmra_validN_op_r. + exists x', x2. eauto using uPred_mono, cmra_validN_op_l, cmra_validN_op_r. Qed. Lemma bupd_ownM_updateP x (Φ : M → Prop) : x ~~>: Φ → uPred_ownM x ==∗ ∃ y, ⌜Φ y⌠∧ uPred_ownM y. diff --git a/theories/base_logic/upred.v b/theories/base_logic/upred.v index 57d91bc94e298c372cb47dce4b70aae5a3243469..e17fe1dc8388e588fd1185f4b153f14654fc997e 100644 --- a/theories/base_logic/upred.v +++ b/theories/base_logic/upred.v @@ -6,43 +6,46 @@ Set Default Proof Using "Type". base_logic.base_logic; that will also give you all the primitive and many derived laws for the logic. *) +(* A good way of understanding this definition of the uPred OFE is to + consider the OFE uPred0 of monotonous SProp predicates. That is, + uPred0 is the OFE of non-expansive functions from M to SProp that + are monotonous with respect to CMRA inclusion. This notion of + monotonicity has to be stated in the SProp logic. Together with the + usual closedness property of SProp, this gives exactly uPred_mono. + + Then, we quotient uPred0 *in the sProp logic* with respect to + equivalence on valid elements of M. That is, we quotient with + respect to the following *sProp* equivalence relation: + P1 ≡ P2 := ∀ x, ✓ x → (P1(x) ↔ P2(x)) (1) + When seen from the ambiant logic, obtaining this quotient requires + definig both a custom Equiv and Dist. + + + It is worth noting that this equivalence relation admits canonical + representatives. More precisely, one can show that every + equivalence class contains exactly one element P0 such that: + ∀ x, (✓ x → P0(x)) → P0(x) (2) + (Again, this assertion has to be understood in sProp). Intuitively, + this says that P0 trivially holds whenever the resource is invalid. + Starting from any element P, one can find this canonical + representative by choosing: + P0(x) := ✓ x → P(x) (3) + + Hence, as an alternative definition of uPred, we could use the set + of canonical representatives (i.e., the subtype of monotonous + sProp predicates that verify (2)). This alternative definition would + save us from using a quotient. However, the definitions of the various + connectives would get more complicated, because we have to make sure + they all verify (2), which sometimes requires some adjustments. We + would moreover need to prove one more property for every logical + connective. + *) + Record uPred (M : ucmraT) : Type := IProp { uPred_holds :> nat → M → Prop; - (* [uPred_mono] is used to prove non-expansiveness (guaranteed by - [uPred_ne]). Therefore, it is important that we do not restrict - it to only valid elements. *) - uPred_mono n x1 x2 : uPred_holds n x1 → x1 ≼{n} x2 → uPred_holds n x2; - - (* We have to restrict this to hold only for valid elements, - otherwise this condition is no longer limit preserving, and uPred - does no longer form a COFE (i.e., [uPred_compl] breaks). This is - because the distance and equivalence on this cofe ignores the - truth value on invalid elements. This, in turn, is required by - the fact that entailment has to ignore invalid elements, which is - itself essential for proving [ownM_valid]. - - We could, actually, remove this restriction and make this - condition apply even to invalid elements: we have proved that - uPred is isomorphic to a sub-COFE of the COFE of predicates that - are monotonous both with respect to the step index and with - respect to x. However, that would essentially require changing - (by making it more complicated) the model of many connectives of - the logic, which we don't want. - This sub-COFE is the sub-COFE of monotonous sProp predicates P - such that the following sProp assertion is valid: - ∀ x, (V(x) → P(x)) → P(x) - Where V is the validity predicate. - - Another way of saying that this is equivalent to this definition of - uPred is to notice that our definition of uPred is equivalent to - quotienting the COFE of monotonous sProp predicates with the - following (sProp) equivalence relation: - P1 ≡ P2 := ∀ x, V(x) → (P1(x) ↔ P2(x)) - whose equivalence classes appear to all have one only canonical - representative such that ∀ x, (V(x) → P(x)) → P(x). - *) - uPred_closed n1 n2 x : uPred_holds n1 x → n2 ≤ n1 → ✓{n2} x → uPred_holds n2 x + uPred_mono n1 n2 x1 x2 : + uPred_holds n1 x1 → x1 ≼{n1} x2 → n2 ≤ n1 → uPred_holds n2 x2 }. Arguments uPred_holds {_} _ _ _ : simpl never. Add Printing Constructor uPred. @@ -77,15 +80,17 @@ Section cofe. Canonical Structure uPredC : ofeT := OfeT (uPred M) uPred_ofe_mixin. Program Definition uPred_compl : Compl uPredC := λ c, - {| uPred_holds n x := c n n x |}. - Next Obligation. naive_solver eauto using uPred_mono. Qed. + {| uPred_holds n x := ∀ n', n' ≤ n → ✓{n'}x → c n' n' x |}. Next Obligation. - intros c n1 n2 x ???; simpl in *. - apply (chain_cauchy c n2 n1); eauto using uPred_closed. + move=> /= c n1 n2 x1 x2 HP Hx12 Hn12 n3 Hn23 Hv. eapply uPred_mono. + eapply HP, cmra_validN_includedN, cmra_includedN_le=>//; lia. + eapply cmra_includedN_le=>//; lia. done. Qed. Global Program Instance uPred_cofe : Cofe uPredC := {| compl := uPred_compl |}. Next Obligation. - intros n c; split=>i x ??; symmetry; apply (chain_cauchy c i n); auto. + intros n c; split=>i x Hin Hv. + etrans; [|by symmetry; apply (chain_cauchy c i n)]. split=>H; [by apply H|]. + repeat intro. apply (chain_cauchy c n' i)=>//. by eapply uPred_mono. Qed. End cofe. Arguments uPredC : clear implicits. @@ -100,8 +105,24 @@ Proof. by intros x1 x2 Hx; apply uPred_ne, equiv_dist. Qed. Lemma uPred_holds_ne {M} (P Q : uPred M) n1 n2 x : P ≡{n2}≡ Q → n2 ≤ n1 → ✓{n2} x → Q n1 x → P n2 x. Proof. - intros [Hne] ???. eapply Hne; try done. - eapply uPred_closed; eauto using cmra_validN_le. + intros [Hne] ???. eapply Hne; try done. eauto using uPred_mono, cmra_validN_le. +Qed. + +(* Equivalence to the definition of uPred in the appendix. *) +Lemma uPred_alt {M : ucmraT} (P: nat → M → Prop) : + (∀ n1 n2 x1 x2, P n1 x1 → x1 ≼{n1} x2 → n2 ≤ n1 → P n2 x2) ↔ + ( (∀ x n1 n2, n2 ≤ n1 → P n1 x → P n2 x) (* Pointwise down-closed *) + ∧ (∀ n x1 x2, x1 ≡{n}≡ x2 → ∀ m, m ≤ n → P m x1 ↔ P m x2) (* Non-expansive *) + ∧ (∀ n x1 x2, x1 ≼{n} x2 → ∀ m, m ≤ n → P m x1 → P m x2) (* Monotonicity *) + ). +Proof. + (* Provide this lemma to eauto. *) + assert (∀ n1 n2 (x1 x2 : M), n2 ≤ n1 → x1 ≡{n1}≡ x2 → x1 ≼{n2} x2). + { intros ????? H. eapply cmra_includedN_le; last done. by rewrite H. } + (* Now go ahead. *) + split. + - intros Hupred. repeat split; eauto using cmra_includedN_le. + - intros (Hdown & _ & Hmono) **. eapply Hmono; [done..|]. eapply Hdown; done. Qed. (** functor *) @@ -109,7 +130,6 @@ Program Definition uPred_map {M1 M2 : ucmraT} (f : M2 -n> M1) `{!CmraMorphism f} (P : uPred M1) : uPred M2 := {| uPred_holds n x := P n (f x) |}. Next Obligation. naive_solver eauto using uPred_mono, cmra_morphism_monotoneN. Qed. -Next Obligation. naive_solver eauto using uPred_closed, cmra_morphism_validN. Qed. Instance uPred_map_ne {M1 M2 : ucmraT} (f : M2 -n> M1) `{!CmraMorphism f} n : Proper (dist n ==> dist n) (uPred_map f). @@ -167,7 +187,7 @@ Inductive uPred_entails {M} (P Q : uPred M) : Prop := Hint Extern 0 (uPred_entails _ _) => reflexivity. Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M). -Hint Resolve uPred_mono uPred_closed : uPred_def. +Hint Resolve uPred_mono : uPred_def. (** Notations *) Notation "P ⊢ Q" := (uPred_entails P%I Q%I)