diff --git a/docs/algebra.tex b/docs/algebra.tex
index 3ba0967042888774ba91ee1af53f50d672ba8acc..adf798b09a2d2bd68fbde99a67c76b22b8e09708 100644
--- a/docs/algebra.tex
+++ b/docs/algebra.tex
@@ -53,6 +53,16 @@ In particular:
 The function space $(-) \nfn (-)$ is a locally non-expansive bifunctor.
 Note that the composition of non-expansive (bi)functors is non-expansive, and the composition of a non-expansive and a contractive (bi)functor is contractive.
 
+One very important OFE is the OFE of \emph{step-indexed propositions}:
+For every step-index, such a proposition either holds or does not hold.
+Moreover, if a propositions holds for some $n$, it also has to hold for all smaller step-indices.
+\begin{align*}
+  \SProp \eqdef{}& \psetdown{\nat} \\
+    \eqdef{}& \setComp{X \in \pset{\nat}}{ \All n, m. n \geq m \Ra n \in X \Ra m \in X } \\
+  X \nequiv{n} Y \eqdef{}& \All m \leq n. m \in X \Lra m \in Y \\
+  X \nincl{n} Y \eqdef{}& \All m \leq n. m \in X \Ra m \in Y
+\end{align*}
+
 \subsection{COFE}
 
 COFEs are \emph{complete OFEs}, which means that we can take limits of arbitrary chains.
@@ -79,12 +89,14 @@ For once, every \emph{contractive function} $f : \ofe \to \cofeB$ where $\cofeB$
 This also holds if $f^k$ is contractive for an arbitrary $k$.
 Furthermore, by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}, every contractive (bi)functor from $\COFEs$ to $\COFEs$ has a unique\footnote{Uniqueness is not proven in Coq.} fixed-point.
 
+$\SProp$ as defined above is complete, \ie it is a COFE.
+
 
 \subsection{RA}
 
 \begin{defn}
   A \emph{resource algebra} (RA) is a tuple \\
-  $(\monoid, \mval \subseteq \monoid, \mcore{{-}}:
+  $(\monoid, \mvalFull :  \monoid \to \mProp, \mcore{{-}}:
   \monoid \to \maybe\monoid, (\mtimes) : \monoid \times \monoid \to \monoid)$ satisfying:
   \begin{align*}
     \All \melt, \meltB, \meltC.& (\melt \mtimes \meltB) \mtimes \meltC = \melt \mtimes (\meltB \mtimes \meltC) \tagH{ra-assoc} \\
@@ -92,16 +104,19 @@ Furthermore, by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkeda
     \All \melt.& \mcore\melt \in \monoid \Ra \mcore\melt \mtimes \melt = \melt \tagH{ra-core-id} \\
     \All \melt.& \mcore\melt \in \monoid \Ra \mcore{\mcore\melt} = \mcore\melt \tagH{ra-core-idem} \\
     \All \melt, \meltB.& \mcore\melt \in \monoid \land \melt \mincl \meltB \Ra \mcore\meltB \in \monoid \land \mcore\melt \mincl \mcore\meltB \tagH{ra-core-mono} \\
-    \All \melt, \meltB.& (\melt \mtimes \meltB) \in \mval \Ra \melt \in \mval \tagH{ra-valid-op} \\
+    \All \melt, \meltB.& \mvalFull(\melt \mtimes \meltB)  \Ra \mvalFull(\melt)  \tagH{ra-valid-op} \\
     \text{where}\qquad %\qquad\\
     \maybe\monoid \eqdef{}& \monoid \uplus \set{\mnocore} \qquad\qquad\qquad \melt^? \mtimes \mnocore \eqdef \mnocore \mtimes \melt^? \eqdef \melt^? \\
     \melt \mincl \meltB \eqdef{}& \Exists \meltC \in \monoid. \meltB = \melt \mtimes \meltC \tagH{ra-incl}
   \end{align*}
 \end{defn}
-\noindent
+Here, $\mProp$ is the set of (meta-level) propositions.
+Think of \texttt{Prop} in Coq or $\mathbb{B}$ in classical mathematics.
+
 RAs are closely related to \emph{Partial Commutative Monoids} (PCMs), with two key differences:
 \begin{enumerate}
-\item The composition operation on RAs is total (as opposed to the partial composition operation of a PCM), but there is a specific subset $\mval$ of \emph{valid} elements that is compatible with the composition operation (\ruleref{ra-valid-op}).
+\item The composition operation on RAs is total (as opposed to the partial composition operation of a PCM), but there is a specific subset of \emph{valid} elements that is compatible with the composition operation (\ruleref{ra-valid-op}).
+These valid elements are identified by the \emph{validity predicate} $\mvalFull$.
 
 This take on partiality is necessary when defining the structure of \emph{higher-order} ghost state, CMRAs, in the next subsection.
 
@@ -122,7 +137,7 @@ Notice also that the core of an RA is a strict generalization of the unit that a
 
 \begin{defn}
   It is possible to do a \emph{frame-preserving update} from $\melt \in \monoid$ to $\meltsB \subseteq \monoid$, written $\melt \mupd \meltsB$, if
-  \[ \All \maybe{\melt_\f} \in \maybe\monoid. \melt \mtimes \maybe{\melt_\f} \in \mval \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \maybe{\melt_\f} \in \mval \]
+  \[ \All \maybe{\melt_\f} \in \maybe\monoid. \melt \mtimes \mvalFull(\maybe{\melt_\f}) \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \mvalFull(\maybe{\melt_\f}) \]
 
   We further define $\melt \mupd \meltB \eqdef \melt \mupd \set\meltB$.
 \end{defn}
@@ -134,17 +149,15 @@ Since Iris ensures that the global ghost state is valid, this means that we can
 \subsection{CMRA}
 
 \begin{defn}
-  A \emph{CMRA} is a tuple $(\monoid : \OFEs, (\mval_n \subseteq \monoid)_{n \in \nat},\\ \mcore{{-}}: \monoid \nfn \maybe\monoid, (\mtimes) : \monoid \times \monoid \nfn \monoid)$ satisfying:
+  A \emph{CMRA} is a tuple $(\monoid : \OFEs, \mval : \monoid \nfn \SProp, \mcore{{-}}: \monoid \nfn \maybe\monoid,\\ (\mtimes) : \monoid \times \monoid \nfn \monoid)$ satisfying:
   \begin{align*}
-    \All n, \melt, \meltB.& \melt \nequiv{n} \meltB \land \melt\in\mval_n \Ra \meltB\in\mval_n \tagH{cmra-valid-ne} \\
-    \All n, m.& n \geq m \Ra \mval_n \subseteq \mval_m \tagH{cmra-valid-mono} \\
     \All \melt, \meltB, \meltC.& (\melt \mtimes \meltB) \mtimes \meltC = \melt \mtimes (\meltB \mtimes \meltC) \tagH{cmra-assoc} \\
     \All \melt, \meltB.& \melt \mtimes \meltB = \meltB \mtimes \melt \tagH{cmra-comm} \\
     \All \melt.& \mcore\melt \in \monoid \Ra \mcore\melt \mtimes \melt = \melt \tagH{cmra-core-id} \\
     \All \melt.& \mcore\melt \in \monoid \Ra \mcore{\mcore\melt} = \mcore\melt \tagH{cmra-core-idem} \\
     \All \melt, \meltB.& \mcore\melt \in \monoid \land \melt \mincl \meltB \Ra \mcore\meltB \in \monoid \land \mcore\melt \mincl \mcore\meltB \tagH{cmra-core-mono} \\
-    \All n, \melt, \meltB.& (\melt \mtimes \meltB) \in \mval_n \Ra \melt \in \mval_n \tagH{cmra-valid-op} \\
-    \All n, \melt, \meltB_1, \meltB_2.& \omit\rlap{$\melt \in \mval_n \land \melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \Ra {}$} \\
+    \All \melt, \meltB.& \mval(\melt \mtimes \meltB) \subseteq \mval(\melt)  \tagH{cmra-valid-op} \\
+    \All n, \melt, \meltB_1, \meltB_2.& \omit\rlap{$n \in \mval(\melt) \land \melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \Ra {}$} \\
     &\Exists \meltC_1, \meltC_2. \melt = \meltC_1 \mtimes \meltC_2 \land \meltC_1 \nequiv{n} \meltB_1 \land \meltC_2 \nequiv{n} \meltB_2 \tagH{cmra-extend} \\
     \text{where}\qquad\qquad\\
     \melt \mincl \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{cmra-incl} \\
@@ -154,8 +167,8 @@ Since Iris ensures that the global ghost state is valid, this means that we can
 
 This is a natural generalization of RAs over OFEs.
 All operations have to be non-expansive, and the validity predicate $\mval$ can now also depend on the step-index.
-We define the plain $\mval$ as the ``limit'' of the $\mval_n$:
-\[ \mval \eqdef \bigcap_{n \in \nat} \mval_n \]
+We define the plain $\mvalFull$ as the ``limit'' of the step-indexed approximation:
+\[ \mvalFull(\melt) \eqdef \All n. n \in \mval(\melt) \]
 
 \paragraph{The extension axiom (\ruleref{cmra-extend}).}
 Notice that the existential quantification in this axiom is \emph{constructive}, \ie it is a sigma type in Coq.
@@ -184,7 +197,7 @@ This operation is needed to prove that $\later$ commutes with separating conjunc
 \begin{defn}
   An element $\munit$ of a CMRA $\monoid$ is called the \emph{unit} of $\monoid$ if it satisfies the following conditions:
   \begin{enumerate}[itemsep=0pt]
-  \item $\munit$ is valid: \\ $\All n. \munit \in \mval_n$
+  \item $\munit$ is valid: \\ $\All n. n \in \mval(\munit)$
   \item $\munit$ is a left-identity of the operation: \\
     $\All \melt \in M. \munit \mtimes \melt = \melt$
   \item $\munit$ is its own core: \\ $\mcore\munit = \munit$
@@ -197,7 +210,7 @@ This operation is needed to prove that $\later$ commutes with separating conjunc
 
 \begin{defn}
   It is possible to do a \emph{frame-preserving update} from $\melt \in \monoid$ to $\meltsB \subseteq \monoid$, written $\melt \mupd \meltsB$, if
-  \[ \All n, \maybe{\melt_\f}. \melt \mtimes \maybe{\melt_\f} \in \mval_n \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \maybe{\melt_\f} \in \mval_n \]
+  \[ \All n, \maybe{\melt_\f}. n \in \mval(\melt \mtimes \maybe{\melt_\f}) \Ra \Exists \meltB \in \meltsB. n \in\mval(\meltB \mtimes \maybe{\melt_\f}) \]
 
   We further define $\melt \mupd \meltB \eqdef \melt \mupd \set\meltB$.
 \end{defn}
@@ -208,7 +221,7 @@ Note that for RAs, this and the RA-based definition of a frame-preserving update
   \begin{enumerate}[itemsep=0pt]
   \item $\monoid$ is a discrete COFE
   \item $\mval$ ignores the step-index: \\
-    $\All \melt \in \monoid. \melt \in \mval_0 \Ra \All n, \melt \in \mval_n$
+    $\All \melt \in \monoid. 0 \in \mval(\melt) \Ra \All n. n \in \mval(\melt)$
   \end{enumerate}
 \end{defn}
 Note that every RA is a discrete CMRA, by picking the discrete COFE for the equivalence relation.
@@ -223,7 +236,7 @@ Furthermore, discrete CMRAs can be turned into RAs by ignoring their COFE struct
   \item $f$ commutes with the core:\\
     $\All \melt \in \monoid_1. \mcore{f(\melt)} = f(\mcore{\melt})$
   \item $f$ preserves validity: \\
-    $\All n, \melt \in \monoid_1. \melt \in \mval_n \Ra f(\melt) \in \mval_n$
+    $\All n, \melt \in \monoid_1. n \in \mval(\melt) \Ra n \in \mval(f(\melt))$
   \end{enumerate}
 \end{defn}
 
diff --git a/docs/constructions.tex b/docs/constructions.tex
index 7290dcf39478ff92248f1ed9f096dc9c92131141..890972fc3ffcbbe47347e17317c4b98d85d3d525 100644
--- a/docs/constructions.tex
+++ b/docs/constructions.tex
@@ -21,32 +21,32 @@ $\latert(-)$ is a locally \emph{contractive} functor from $\OFEs$ to $\OFEs$.
 
 Given a CMRA $\monoid$, we define the COFE $\UPred(\monoid)$ of \emph{uniform predicates} over $\monoid$ as follows:
 \begin{align*}
-  \UPred(\monoid) \eqdef{} \setComp{\pred: \nat \times \monoid \to \mProp}{
-  \begin{inbox}[c]
-    (\All n, x, y. \pred(n, x) \land x \nequiv{n} y \Ra \pred(n, y)) \land {}\\
-    (\All n, m, x, y. \pred(n, x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra \pred(m, y))
-  \end{inbox}
-}
+\monoid \monnra \SProp \eqdef{}& \setComp{\pred: \monoid \nfn \SProp}
+{\All n, \melt, \meltB. \melt \mincl[n] \meltB \Ra \pred(\melt) \nincl{n} \pred(\meltB)} \\
+  \UPred(\monoid) \eqdef{}&  \faktor{\monoid \monnra \SProp}{\equiv} \\
+  \pred \equiv \predB \eqdef{}& \All m, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff  m \in \predB(\melt)) \\
+  \pred \nequiv{n} \predB \eqdef{}& \All m \le n, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff  m \in \predB(\melt))
 \end{align*}
-where $\mProp$ is the set of meta-level propositions, \eg Coq's \texttt{Prop}.
+You can think of uniform predicates as monotone, step-indexed predicates over a CMRA that ``ignore'' invalid elements (as defined by the quotient).
+
 $\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$.
 
-One way to understand this definition is to re-write it a little.
-We start by defining the COFE of \emph{step-indexed propositions}: For every step-index, the proposition either holds or does not hold.
-\begin{align*}
-  \SProp \eqdef{}& \psetdown{\nat} \\
-    \eqdef{}& \setComp{X \in \pset{\nat}}{ \All n, m. n \geq m \Ra n \in X \Ra m \in X } \\
-  X \nequiv{n} Y \eqdef{}& \All m \leq n. m \in X \Lra m \in Y
-\end{align*}
-Notice that this notion of $\SProp$ is already hidden in the validity predicate $\mval_n$ of a CMRA:
-We could equivalently require every CMRA to define $\mval_{-}(-) : \monoid \nfn \SProp$, replacing \ruleref{cmra-valid-ne} and \ruleref{cmra-valid-mono}.
+It is worth noting that the above quotient admits canonical
+representatives. More precisely, one can show that every
+equivalence class contains exactly one element $P_0$ such that:
+\[ \All n, \melt.  (\mval(\melt) \nincl{n} P_0(\melt)) \Ra n \in P_0(\melt)  \tagH{UPred-canonical}  \]
+Intuitively, this says that $P_0$ trivially holds whenever the resource is invalid.
+Starting from any element $P$, one can find this canonical
+representative by choosing $P_0(\melt) := \setComp{n}{n \in \mval(\melt) \Ra n \in P(\melt)}$.
+
+Hence, as an alternative definition of $\UPred$, we could use the set
+of canonical representatives. This alternative definition would
+save us from using a quotient. However, the definitions of the various
+connectives would get more complicated, because we have to make sure
+they all verify \ruleref{UPred-canonical}, which sometimes requires some adjustments. We
+would moreover need to prove one more property for every logical
+connective.
 
-Now we can rewrite $\UPred(\monoid)$ as monotone step-indexed predicates over $\monoid$, where the definition of a ``monotone'' function here is a little funny.
-\begin{align*}
-  \UPred(\monoid) \cong{}& \monoid \monra \SProp \\
-     \eqdef{}& \setComp{\pred: \monoid \nfn \SProp}{\All n, m, x, y. n \in \pred(x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra m \in \pred(y)}
-\end{align*}
-The reason we chose the first definition is that it is easier to work with in Coq.
 
 \clearpage
 \section{RA and CMRA constructions}
@@ -69,16 +69,16 @@ Frame-preserving updates on the $M_i$ lift to the product:
 The \emph{sum CMRA} $\monoid_1 \csumm \monoid_2$ for any CMRAs $\monoid_1$ and $\monoid_2$ is defined as (again, we use a datatype-like notation):
 \begin{align*}
   \monoid_1 \csumm \monoid_2 \eqdef{}& \cinl(\melt_1:\monoid_1) \mid \cinr(\melt_2:\monoid_2) \mid \mundef \\
-  \mval_n \eqdef{}& \setComp{\cinl(\melt_1)}{\melt_1 \in \mval'_n}
-    \cup \setComp{\cinr(\melt_2)}{\melt_2 \in \mval''_n}  \\
+  \mval(\mundef) \eqdef{}& \emptyset \\
+  \mval(\cinl(\melt)) \eqdef{}& \mval_1(\melt)  \\
   \cinl(\melt_1) \mtimes \cinl(\meltB_1) \eqdef{}& \cinl(\melt_1 \mtimes \meltB_1)  \\
 %  \munit \mtimes \ospending \eqdef{}& \ospending \mtimes \munit \eqdef \ospending \\
 %  \munit \mtimes \osshot(\melt) \eqdef{}& \osshot(\melt) \mtimes \munit \eqdef \osshot(\melt) \\
   \mcore{\cinl(\melt_1)} \eqdef{}& \begin{cases}\mnocore & \text{if $\mcore{\melt_1} = \mnocore$} \\ \cinl({\mcore{\melt_1}}) & \text{otherwise} \end{cases}
 \end{align*}
-The composition and core for $\cinr$ are defined symmetrically.
+Above, $\mval_1$ refers to the validity of $\monoid_1$.
+The validity, composition and core for $\cinr$ are defined symmetrically.
 The remaining cases of the composition and core are all $\mundef$.
-Above, $\mval'$ refers to the validity of $\monoid_1$, and $\mval''$ to the validity of $\monoid_2$.
 
 Notice that we added the artificial ``invalid'' (or ``undefined'') element $\mundef$ to this CMRA just in order to make certain compositions of elements (in this case, $\cinl$ and $\cinr$) invalid.
 
@@ -99,7 +99,7 @@ We obtain the following frame-preserving updates, as well as their symmetric cou
   {\cinl(\melt) \mupd \setComp{ \cinl(\meltB)}{\meltB \in \meltsB}}
 
   \inferH{sum-swap}
-  {\All \melt_\f, n. \melt \mtimes \melt_\f \notin \mval'_n \and \meltB \in \mval''}
+  {\All \melt_\f \in M, n. n  \notin \mval(\melt \mtimes \melt_\f) \and \mvalFull(\meltB)}
   {\cinl(\melt) \mupd \cinr(\meltB)}
 \end{mathpar}
 Crucially, the second rule allows us to \emph{swap} the ``side'' of the sum that the CMRA is on if $\mval$ has \emph{no possible frame}.
@@ -122,18 +122,18 @@ Given some infinite countable $K$ and some CMRA $\monoid$, the set of finite par
 We obtain the following frame-preserving updates:
 \begin{mathpar}
   \inferH{fpfn-alloc-strong}
-  {\text{$G$ infinite} \and \melt \in \mval}
+  {\text{$G$ infinite} \and \mvalFull(\melt)}
   {\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in G}}
 
   \inferH{fpfn-alloc}
-  {\melt \in \mval}
+  {\mvalFull(\melt)}
   {\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in K}}
 
   \inferH{fpfn-update}
   {\melt \mupd_\monoid \meltsB}
   {\mapinsert i \melt f] \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}}
 \end{mathpar}
-Above, $\mval$ refers to the validity of $\monoid$.
+Above, $\mvalFull$ refers to the (full) validity of $\monoid$.
 
 $K \fpfn (-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$.
 
@@ -146,7 +146,7 @@ Given some OFE $\cofe$, we define the CMRA $\agm(\cofe)$ as follows:
   \textnormal{where }& \melt \sim \meltB \eqdef{} \All n. \melt \nequiv{n} \meltB  \\
 ~\\
 %    \All n \in {\melt.V}.\, \melt.x \nequiv{n} \meltB.x \\
-  \mval_n \eqdef{}& \setComp{\melt \in \agm(\cofe)}{ \All x, y \in \melt. x \nequiv{n} y } \\
+  \mval(\melt) \eqdef{}& \setComp{n}{ \All x, y \in \melt. x \nequiv{n} y } \\
   \mcore\melt \eqdef{}& \melt \\
   \melt \mtimes \meltB \eqdef{}& \melt \cup \meltB
 \end{align*}
@@ -158,11 +158,11 @@ We define a non-expansive injection $\aginj$ into $\agm(\cofe)$ as follows:
 \[ \aginj(x) \eqdef \set{x} \]
 There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can show the following:
 \begin{mathpar}
-  \axiomH{ag-val}{\aginj(x) \in \mval_n}
+  \axiomH{ag-val}{\mvalFull(\aginj(x))}
 
   \axiomH{ag-dup}{\aginj(x) = \aginj(x)\mtimes\aginj(x)}
   
-  \axiomH{ag-agree}{\aginj(x) \mtimes \aginj(y) \in \mval_n \Lra x \nequiv{n} y}
+  \axiomH{ag-agree}{n \in \mval(\aginj(x) \mtimes \aginj(y)) \Ra x \nequiv{n} y}
 \end{mathpar}
 
 
@@ -171,7 +171,7 @@ There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can
 Given an OFE $\cofe$, we define a CMRA $\exm(\cofe)$ such that at most one $x \in \cofe$ can be owned:
 \begin{align*}
   \exm(\cofe) \eqdef{}& \exinj(\cofe) \mid \mundef \\
-  \mval_n \eqdef{}& \setComp{\melt\in\exm(\cofe)}{\melt \neq \mundef}
+  \mval(\melt) \eqdef{}& \setComp{n}{\melt \neq \mundef}
 \end{align*}
 All cases of composition go to $\mundef$.
 \begin{align*}
@@ -281,7 +281,7 @@ We assume that $M$ has a unit $\munit$, and hence its core is total.
 (If $M$ is an exclusive monoid, the construction is very similar to a half-ownership monoid with two asymmetric halves.)
 \begin{align*}
 \authm(M) \eqdef{}& \maybe{\exm(M)} \times M \\
-\mval_n \eqdef{}& \setComp{ (x, \meltB) \in \authm(M) }{ \meltB \in \mval_n \land (x = \mnocore \lor \Exists \melt. x = \exinj(\melt) \land \meltB \mincl_n \melt) } \\
+\mval( (x, \meltB ) ) \eqdef{}& \setComp{ n }{ n \in \mval(\meltB) \land (x = \mnocore \lor \Exists \melt. x = \exinj(\melt) \land \meltB \mincl_n \melt) } \\
   (x_1, \meltB_1) \mtimes (x_2, \meltB_2) \eqdef{}& (x_1 \mtimes x_2, \meltB_2 \mtimes \meltB_2) \\
   \mcore{(x, \meltB)} \eqdef{}& (\mnocore, \mcore\meltB) \\
   (x_1, \meltB_1) \nequiv{n} (x_2, \meltB_2) \eqdef{}& x_1 \nequiv{n} x_2 \land \meltB_1 \nequiv{n} \meltB_2
@@ -295,7 +295,7 @@ The frame-preserving update involves the notion of a \emph{local update}:
 \newcommand\lupd{\stackrel{\mathrm l}{\mupd}}
 \begin{defn}
   It is possible to do a \emph{local update} from $\melt_1$ and $\meltB_1$ to $\melt_2$ and $\meltB_2$, written $(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)$, if
-  \[ \All n, \maybe{\melt_\f}. \melt_1 \in \mval_n \land \melt_1 \nequiv{n} \meltB_1 \mtimes \maybe{\melt_\f} \Ra \melt_2 \in \mval_n \land \melt_2 \nequiv{n} \meltB_2 \mtimes \maybe{\melt_\f} \]
+  \[ \All n, \maybe{\melt_\f}. n \in \mval(\melt_1) \land \melt_1 \nequiv{n} \meltB_1 \mtimes \maybe{\melt_\f} \Ra n \in \mval(\melt_2) \land \melt_2 \nequiv{n} \meltB_2 \mtimes \maybe{\melt_\f} \]
 \end{defn}
 In other words, the idea is that for every possible frame $\maybe{\melt_\f}$ completing $\meltB_1$ to $\melt_1$, the same frame also completes $\meltB_2$ to $\melt_2$.
 
@@ -327,7 +327,7 @@ We further define \emph{closed} sets of states (given a particular set of tokens
 The STS RA is defined as follows
 \begin{align*}
   \monoid \eqdef{}& \STSauth(s:\STSS, T:\wp(\STST) \mid \STSL(s) \disj T) \mid{}\\& \STSfrag(S: \wp(\STSS), T: \wp(\STST) \mid \STSclsd(S, T) \land S \neq \emptyset) \mid \mundef \\
-  \mval \eqdef{}& \setComp{\melt\in\monoid}{\melt \neq \mundef} \\
+  \mvalFull(\melt) \eqdef{}& \melt \neq \mundef \\
   \STSfrag(S_1, T_1) \mtimes \STSfrag(S_2, T_2) \eqdef{}& \STSfrag(S_1 \cap S_2, T_1 \cup T_2) \qquad\qquad\qquad \text{if $T_1 \disj T_2$ and $S_1 \cap S_2 \neq \emptyset$} \\
   \STSfrag(S, T) \mtimes \STSauth(s, T') \eqdef{}& \STSauth(s, T') \mtimes \STSfrag(S, T) \eqdef \STSauth(s, T \cup T') \qquad \text{if $T \disj T'$ and $s \in S$} \\
   \mcore{\STSfrag(S, T)} \eqdef{}& \STSfrag(\upclose(S, \emptyset), \emptyset) \\
diff --git a/docs/iris.sty b/docs/iris.sty
index 9ba0f619ee6025bb86dd090ac8e161017be62f73..d55611a86cb493fdd04316b28a7b2dd8c3da113d 100644
--- a/docs/iris.sty
+++ b/docs/iris.sty
@@ -36,7 +36,7 @@
 \newcommand{\upclose}{\mathord{\uparrow}}
 \newcommand{\ALT}{\ |\ }
 
-\newcommand{\spac}{\,} % a space
+\newcommand{\spac}{\hskip 0.2em plus 0.1em} % a space
 
 \def\All #1.{\forall #1.\spac}%
 \def\Exists #1.{\exists #1.\spac}%
@@ -117,6 +117,7 @@
 \newcommand{\wtt}[2]{#1 : #2} % well-typed term
 
 \newcommand{\nequiv}[1]{\ensuremath{\mathrel{\stackrel{#1}{=}}}}
+\newcommand{\nincl}[1]{\ensuremath{\mathrel{\stackrel{#1}{\subseteq}}}}
 \newcommand{\notnequiv}[1]{\ensuremath{\mathrel{\stackrel{#1}{\neq}}}}
 \newcommand{\nequivset}[2]{\ensuremath{\mathrel{\stackrel{#1}{=}_{#2}}}}
 \newcommand{\nequivB}[1]{\ensuremath{\mathrel{\stackrel{#1}{\equiv}}}}
diff --git a/docs/model.tex b/docs/model.tex
index 6100fb39be49d0689d410ad482466b1962b4a34e..a241fdad723f682d21ee3a6bd948f791dd42de01 100644
--- a/docs/model.tex
+++ b/docs/model.tex
@@ -42,7 +42,7 @@ We are thus going to define the assertions as mapping CMRA elements to sets of s
 	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cup \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
 	\Sem{\vctx \proves \prop \Ra \propB : \Prop}_\gamma &\eqdef
 	\Lam \melt. \setComp{n}{\begin{aligned}
-            \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land \meltB \in \mval_m \Ra {} \\
+            \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land m \in \mval(\meltB) \Ra {} \\
             & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB)\end{aligned}}\\
 	\Sem{\vctx \proves \All \var : \type. \prop : \Prop}_\gamma &\eqdef
 	\Lam \melt. \setComp{n}{ \All v \in \Sem{\type}. n \in \Sem{\vctx, \var : \type \proves \prop : \Prop}_{\mapinsert \var v \gamma}(\melt) } \\
@@ -54,15 +54,15 @@ We are thus going to define the assertions as mapping CMRA elements to sets of s
 \\
 	\Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef
 	\Lam \melt. \setComp{n}{\begin{aligned}
-            \All m, \meltB.& m \leq n \land  \melt\mtimes\meltB \in \mval_m \Ra {} \\
+            \All m, \meltB.& m \leq n \land  m \in \mval(\melt\mtimes\meltB) \Ra {} \\
             & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\
         \Sem{\vctx \proves \ownM{\term} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\Sem{\vctx \proves \term : \textlog{M}}_\gamma \mincl[n] \meltB}  \\
-        \Sem{\vctx \proves \mval(\term) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\Sem{\vctx \proves \term : \textlog{M}}_\gamma \in \mval_n} \\
+        \Sem{\vctx \proves \mval(\term) : \Prop}_\gamma &\eqdef \Lam\any. \mval(\Sem{\vctx \proves \term : \textlog{M}}_\gamma) \\
 	\Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\
 	\Sem{\vctx \proves \plainly{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\munit) \\
 	\Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\
         \Sem{\vctx \proves \upd\prop : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned}
-            \All m, \melt'. & m \leq n \land (\melt \mtimes \melt') \in \mval_m \Ra {}\\& \Exists \meltB. (\meltB \mtimes \melt') \in \mval_m \land m \in \Sem{\vctx \proves \prop :\Prop}_\gamma(\meltB)
+            \All m, \melt'. & m \leq n \land m \in \mval(\melt \mtimes \melt') \Ra {}\\& \Exists \meltB. m \in \mval(\meltB \mtimes \melt') \land m \in \Sem{\vctx \proves \prop :\Prop}_\gamma(\meltB)
           \end{aligned}
 }
 \end{align*}
diff --git a/theories/base_logic/double_negation.v b/theories/base_logic/double_negation.v
index a27253cd1667f3dcd789eb57fe9e6ec25c65a5ba..edc4289c05a70fac9355a28bbd594a146c9972ee 100644
--- a/theories/base_logic/double_negation.v
+++ b/theories/base_logic/double_negation.v
@@ -30,11 +30,11 @@ Import uPred.
 Lemma laterN_big n a x φ: ✓{n} x →  a ≤ n → (▷^a ⌜φ⌝)%I n x → φ.
 Proof.
   induction 2 as [| ?? IHle].
-  - induction a; repeat (rewrite //= || uPred.unseal). 
+  - induction a; repeat (rewrite //= || uPred.unseal).
     intros Hlater. apply IHa; auto using cmra_validN_S.
-    move:Hlater; repeat (rewrite //= || uPred.unseal). 
+    move:Hlater; repeat (rewrite //= || uPred.unseal).
   - intros. apply IHle; auto using cmra_validN_S.
-    eapply uPred_closed; eauto using cmra_validN_S.
+    eapply uPred_mono; eauto using cmra_validN_S.
 Qed.
 
 Lemma laterN_small n a x φ: ✓{n} x →  n < a → (▷^a ⌜φ⌝)%I n x.
@@ -46,15 +46,15 @@ Proof.
   - induction n as [| n IHn]; [| move: IHle];
       repeat (rewrite //= || uPred.unseal).
     red; rewrite //=. intros.
-    eapply (uPred_closed _ _ (S n)); eauto using cmra_validN_S.
+    eapply (uPred_mono _ _ (S n)); eauto using cmra_validN_S.
 Qed.
 
 (* It is easy to show that most of the basic properties of bupd that
-   are used throughout Iris hold for nnupd. 
+   are used throughout Iris hold for nnupd.
 
    In fact, the first three properties that follow hold for any
    modality of the form (- -∗ Q) -∗ Q for arbitrary Q. The situation
-   here is slightly different, because nnupd is of the form 
+   here is slightly different, because nnupd is of the form
    ∀ n, (- -∗ (Q n)) -∗ (Q n), but the proofs carry over straightforwardly.
 
  *)
@@ -77,8 +77,8 @@ Proof.
 Qed.
 Lemma nnupd_ownM_updateP x (Φ : M → Prop) :
   x ~~>: Φ → uPred_ownM x =n=> ∃ y, ⌜Φ y⌝ ∧ uPred_ownM y.
-Proof. 
-  intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal. 
+Proof.
+  intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal.
   intros n y ? Hown a.
   red; rewrite //= => n' yf ??.
   inversion Hown as (x'&Hequiv).
@@ -87,18 +87,18 @@ Proof.
   case (decide (a ≤ n')).
   - intros Hle Hwand.
     exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' (y' â‹… x'))); eauto.
-    * rewrite comm -assoc. done. 
-    * rewrite comm -assoc. done. 
-    * eexists. split; eapply uPred_mono; red; rewrite //=; eauto.
-  - intros; assert (n' < a). omega.
+    * rewrite comm -assoc. done.
+    * rewrite comm -assoc. done.
+    * exists y'. split=>//. by exists x'.
+ - intros; assert (n' < a). omega.
     move: laterN_small. uPred.unseal.
     naive_solver.
 Qed.
 
 (* However, the transitivity property seems to be much harder to
-   prove. This is surprising, because transitivity does hold for 
+   prove. This is surprising, because transitivity does hold for
    modalities of the form (- -∗ Q) -∗ Q. What goes wrong when we quantify
-   now over n? 
+   now over n?
  *)
 
 Remark nnupd_trans P: (|=n=> |=n=> P) ⊢ (|=n=> P).
@@ -111,7 +111,7 @@ Proof.
   (* Oops -- the exponents of the later modality don't match up! *)
 Abort.
 
-(* Instead, we will need to prove this in the model. We start by showing that 
+(* Instead, we will need to prove this in the model. We start by showing that
    nnupd is the limit of a the following sequence:
 
    (- -∗ False) - ∗ False,
@@ -121,12 +121,12 @@ Abort.
 
    Then, it is easy enough to show that each of the uPreds in this sequence
    is transitive. It turns out that this implies that nnupd is transitive. *)
-   
+
 
 (* The definition of the sequence above: *)
 Fixpoint uPred_nnupd_k {M} k (P: uPred M) : uPred M :=
   ((P -∗ ▷^k False) -∗ ▷^k False) ∧
-  match k with 
+  match k with
     O => True
   | S k' => uPred_nnupd_k k' P
   end.
@@ -138,11 +138,11 @@ Notation "|=n=>_ k Q" := (uPred_nnupd_k k Q)
 (* One direction of the limiting process is easy -- nnupd implies nnupd_k for each k *)
 Lemma nnupd_trunc1 k P: (|=n=> P) ⊢ |=n=>_k P.
 Proof.
-  induction k. 
-  - rewrite /uPred_nnupd_k /uPred_nnupd. 
+  induction k.
+  - rewrite /uPred_nnupd_k /uPred_nnupd.
     rewrite (forall_elim 0) //= right_id //.
   - simpl. apply and_intro; auto.
-    rewrite /uPred_nnupd. 
+    rewrite /uPred_nnupd.
     rewrite (forall_elim (S k)) //=.
 Qed.
 
@@ -190,11 +190,10 @@ Lemma nnupd_nnupd_k_dist k P: (|=n=> P)%I ≡{k}≡ (|=n=>_k P)%I.
          *** intros. exfalso. assert (n ≤ k'). omega.
              assert (n = S k ∨ n < S k) as [->|] by omega.
              **** eapply laterN_big; eauto; unseal. eapply HnnP; eauto.
-             **** move:nnupd_k_elim. unseal. intros Hnnupdk. 
+             **** move:nnupd_k_elim. unseal. intros Hnnupdk.
                   eapply laterN_big; eauto. unseal.
                   eapply (Hnnupdk n k); first omega; eauto.
-                  exists x, x'. split_and!; eauto. eapply uPred_closed; eauto.
-                  eapply cmra_validN_op_l; eauto.
+                  exists x, x'. split_and!; eauto. eapply uPred_mono; eauto.
       ** intros HP. eapply IHk; auto.
          move:HP. unseal. intros (?&?); naive_solver.
 Qed.
@@ -204,13 +203,13 @@ Lemma nnupd_k_intro k P: P ⊢ (|=n=>_k P).
 Proof.
   induction k; rewrite //= ?right_id.
   - apply wand_intro_l. apply wand_elim_l.
-  - apply and_intro; auto. 
+  - apply and_intro; auto.
     apply wand_intro_l. apply wand_elim_l.
 Qed.
 
 Lemma nnupd_k_mono k P Q: (P ⊢ Q) → (|=n=>_k P) ⊢ (|=n=>_k Q).
 Proof.
-  induction k; rewrite //= ?right_id=>HPQ. 
+  induction k; rewrite //= ?right_id=>HPQ.
   - do 2 (apply wand_mono; auto).
   - apply and_mono; auto; do 2 (apply wand_mono; auto).
 Qed.
@@ -228,13 +227,13 @@ Lemma nnupd_k_trans k P: (|=n=>_k |=n=>_k P) ⊢ (|=n=>_k P).
 Proof.
   revert P.
   induction k; intros P.
-  - rewrite //= ?right_id. apply wand_intro_l. 
+  - rewrite //= ?right_id. apply wand_intro_l.
     rewrite {1}(nnupd_k_intro 0 (P -∗ False)%I) //= ?right_id. apply wand_elim_r. 
   - rewrite {2}(nnupd_k_unfold k P).
     apply and_intro.
     * rewrite (nnupd_k_unfold k P). rewrite and_elim_l.
       rewrite nnupd_k_unfold. rewrite and_elim_l.
-      apply wand_intro_l. 
+      apply wand_intro_l.
       rewrite {1}(nnupd_k_intro (S k) (P -∗ ▷^(S k) (False)%I)).
       rewrite nnupd_k_unfold and_elim_l. apply wand_elim_r.
     * do 2 rewrite nnupd_k_weaken //.
@@ -263,8 +262,8 @@ Proof.
   case (decide (a ≤ n')).
   - intros Hle Hwand.
     exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' x')); eauto.
-    * rewrite comm. done. 
-    * rewrite comm. done. 
+    * rewrite comm. done.
+    * rewrite comm. done.
   - intros; assert (n' < a). omega.
     move: laterN_small. uPred.unseal.
     naive_solver.
@@ -300,23 +299,23 @@ End classical.
 Lemma nnupd_dne φ: (|=n=> ⌜¬¬ φ → φ⌝: uPred M)%I.
 Proof.
   rewrite /uPred_nnupd. apply forall_intro=>n.
-  apply wand_intro_l. rewrite ?right_id. 
+  apply wand_intro_l. rewrite ?right_id.
   assert (∀ φ, ¬¬¬¬φ → ¬¬φ) by naive_solver.
   assert (Hdne: ¬¬ (¬¬φ → φ)) by naive_solver.
   split. unseal. intros n' ?? Hupd.
   case (decide (n' < n)).
   - intros. move: laterN_small. unseal. naive_solver.
-  - intros. assert (n ≤ n'). omega. 
+  - intros. assert (n ≤ n'). omega.
     exfalso. specialize (Hupd n' ε).
     eapply Hdne. intros Hfal.
-    eapply laterN_big; eauto. 
+    eapply laterN_big; eauto.
     unseal. rewrite right_id in Hupd *; naive_solver.
 Qed.
 
 (* Nevertheless, we can prove a weaker form of adequacy (which is equvialent to adequacy
    under classical axioms) directly without passing through the proofs for bupd: *)
 Lemma adequacy_helper1 P n k x:
-  ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> ▷ P)%I P (S n + k) x) 
+  ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> ▷ P)%I P (S n + k) x)
             → ¬¬ (∃ x', ✓{n + k} (x') ∧ Nat.iter n (λ P, |=n=> ▷ P)%I P (n + k) (x')).
 Proof.
   revert k P x. induction n.
@@ -326,12 +325,12 @@ Proof.
     specialize (Hf3 (S k) (S k) ε). rewrite right_id in Hf3 *. unseal.
     intros Hf3. eapply Hf3; eauto.
     intros ??? Hx'. rewrite left_id in Hx' *=> Hx'.
-    unseal. 
+    unseal.
     assert (n' < S k ∨ n' = S k) as [|] by omega.
     * intros. move:(laterN_small n' (S k) x' False). rewrite //=. unseal. intros Hsmall. 
       eapply Hsmall; eauto.
     * subst. intros. exfalso. eapply Hf2. exists x'. split; eauto using cmra_validN_S.
-  - intros k P x Hx. rewrite ?Nat_iter_S_r. 
+  - intros k P x Hx. rewrite ?Nat_iter_S_r.
     replace (S (S n) + k) with (S n + (S k)) by omega.
     replace (S n + k) with (n + (S k)) by omega.
     intros. eapply IHn. replace (S n + S k) with (S (S n) + k) by omega. eauto.
@@ -339,7 +338,7 @@ Proof.
 Qed.
 
 Lemma adequacy_helper2 P n k x:
-  ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> ▷ P)%I P (S n + k) x) 
+  ✓{S n + k} x → ¬¬ (Nat.iter (S n) (λ P, |=n=> ▷ P)%I P (S n + k) x)
             → ¬¬ (∃ x', ✓{k} (x') ∧ Nat.iter 0 (λ P, |=n=> ▷ P)%I P k (x')).
 Proof.
   revert x. induction n.
diff --git a/theories/base_logic/primitive.v b/theories/base_logic/primitive.v
index 1c718f84d5de23bb9ba1dd0ba929504d4e661fef..d2724cedd474bf08d4910d9b4ba9e1e021a08744 100644
--- a/theories/base_logic/primitive.v
+++ b/theories/base_logic/primitive.v
@@ -35,11 +35,10 @@ Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
   {| uPred_holds n x := ∀ n' x',
        x ≼ x' → n' ≤ n → ✓{n'} x' → P n' x' → Q n' x' |}.
 Next Obligation.
-  intros M P Q n1 x1 x1' HPQ [x2 Hx1'] n2 x3 [x4 Hx3] ?; simpl in *.
+  intros M P Q n1 n1' x1 x1' HPQ [x2 Hx1'] Hn1 n2 x3 [x4 Hx3] ?; simpl in *.
   rewrite Hx3 (dist_le _ _ _ _ Hx1'); auto. intros ??.
   eapply HPQ; auto. exists (x2 â‹… x4); by rewrite assoc.
 Qed.
-Next Obligation. intros M P Q [|n1] [|n2] x; auto with lia. Qed.
 Definition uPred_impl_aux : seal (@uPred_impl_def). by eexists. Qed.
 Definition uPred_impl {M} := unseal uPred_impl_aux M.
 Definition uPred_impl_eq :
@@ -71,14 +70,9 @@ Definition uPred_internal_eq_eq:
 Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
   {| uPred_holds n x := ∃ x1 x2, x ≡{n}≡ x1 ⋅ x2 ∧ P n x1 ∧ Q n x2 |}.
 Next Obligation.
-  intros M P Q n x y (x1&x2&Hx&?&?) [z Hy].
+  intros M P Q n1 n2 x y (x1&x2&Hx&?&?) [z Hy] Hn.
   exists x1, (x2 â‹… z); split_and?; eauto using uPred_mono, cmra_includedN_l.
-  by rewrite Hy Hx assoc.
-Qed.
-Next Obligation.
-  intros M P Q n1 n2 x (x1&x2&Hx&?&?) ?; rewrite {1}(dist_le _ _ _ _ Hx) // =>?.
-  exists x1, x2; ofe_subst; split_and!;
-    eauto using dist_le, uPred_closed, cmra_validN_op_l, cmra_validN_op_r.
+  eapply dist_le, Hn. by rewrite Hy Hx assoc.
 Qed.
 Definition uPred_sep_aux : seal (@uPred_sep_def). by eexists. Qed.
 Definition uPred_sep {M} := unseal uPred_sep_aux M.
@@ -88,11 +82,10 @@ Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
   {| uPred_holds n x := ∀ n' x',
        n' ≤ n → ✓{n'} (x ⋅ x') → P n' x' → Q n' (x ⋅ x') |}.
 Next Obligation.
-  intros M P Q n x1 x1' HPQ ? n3 x3 ???; simpl in *.
-  apply uPred_mono with (x1 â‹… x3);
+  intros M P Q n1 n1' x1 x1' HPQ ? Hn n3 x3 ???; simpl in *.
+  eapply uPred_mono with n3 (x1 â‹… x3);
     eauto using cmra_validN_includedN, cmra_monoN_r, cmra_includedN_le.
 Qed.
-Next Obligation. naive_solver. Qed.
 Definition uPred_wand_aux : seal (@uPred_wand_def). by eexists. Qed.
 Definition uPred_wand {M} := unseal uPred_wand_aux M.
 Definition uPred_wand_eq :
@@ -103,7 +96,7 @@ Definition uPred_wand_eq :
    because Iris is afine.  The following is easier to work with. *)
 Program Definition uPred_plainly_def {M} (P : uPred M) : uPred M :=
   {| uPred_holds n x := P n ε |}.
-Solve Obligations with naive_solver eauto using uPred_closed, ucmra_unit_validN.
+Solve Obligations with naive_solver eauto using uPred_mono, ucmra_unit_validN.
 Definition uPred_plainly_aux : seal (@uPred_plainly_def). by eexists. Qed.
 Definition uPred_plainly {M} := unseal uPred_plainly_aux M.
 Definition uPred_plainly_eq :
@@ -114,7 +107,6 @@ Program Definition uPred_persistently_def {M} (P : uPred M) : uPred M :=
 Next Obligation.
   intros M; naive_solver eauto using uPred_mono, @cmra_core_monoN.
 Qed.
-Next Obligation. naive_solver eauto using uPred_closed, @cmra_core_validN. Qed.
 Definition uPred_persistently_aux : seal (@uPred_persistently_def). by eexists. Qed.
 Definition uPred_persistently {M} := unseal uPred_persistently_aux M.
 Definition uPred_persistently_eq :
@@ -123,10 +115,7 @@ Definition uPred_persistently_eq :
 Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
   {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
 Next Obligation.
-  intros M P [|n] x1 x2; eauto using uPred_mono, cmra_includedN_S.
-Qed.
-Next Obligation.
-  intros M P [|n1] [|n2] x; eauto using uPred_closed, cmra_validN_S with lia.
+  intros M P [|n1] [|n2] x1 x2; eauto using uPred_mono, cmra_includedN_S with lia.
 Qed.
 Definition uPred_later_aux : seal (@uPred_later_def). by eexists. Qed.
 Definition uPred_later {M} := unseal uPred_later_aux M.
@@ -136,10 +125,9 @@ Definition uPred_later_eq :
 Program Definition uPred_ownM_def {M : ucmraT} (a : M) : uPred M :=
   {| uPred_holds n x := a ≼{n} x |}.
 Next Obligation.
-  intros M a n x1 x [a' Hx1] [x2 ->].
-  exists (a' â‹… x2). by rewrite (assoc op) Hx1.
+  intros M a n1 n2 x1 x [a' Hx1] [x2 Hx] Hn. eapply cmra_includedN_le=>//.
+  exists (a' â‹… x2). by rewrite Hx(assoc op) Hx1.
 Qed.
-Next Obligation. naive_solver eauto using cmra_includedN_le. Qed.
 Definition uPred_ownM_aux : seal (@uPred_ownM_def). by eexists. Qed.
 Definition uPred_ownM {M} := unseal uPred_ownM_aux M.
 Definition uPred_ownM_eq :
@@ -157,13 +145,12 @@ Program Definition uPred_bupd_def {M} (Q : uPred M) : uPred M :=
   {| uPred_holds n x := ∀ k yf,
       k ≤ n → ✓{k} (x ⋅ yf) → ∃ x', ✓{k} (x' ⋅ yf) ∧ Q k x' |}.
 Next Obligation.
-  intros M Q n x1 x2 HQ [x3 Hx] k yf Hk.
+  intros M Q n1 n2 x1 x2 HQ [x3 Hx] Hn k yf Hk.
   rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy.
   destruct (HQ k (x3 â‹… yf)) as (x'&?&?); [auto|by rewrite assoc|].
   exists (x' â‹… x3); split; first by rewrite -assoc.
-  apply uPred_mono with x'; eauto using cmra_includedN_l.
+  eauto using uPred_mono, cmra_includedN_l.
 Qed.
-Next Obligation. naive_solver. Qed.
 Definition uPred_bupd_aux : seal (@uPred_bupd_def). by eexists. Qed.
 Definition uPred_bupd {M} := unseal uPred_bupd_aux M.
 Definition uPred_bupd_eq : @uPred_bupd = @uPred_bupd_def := seal_eq uPred_bupd_aux.
@@ -380,7 +367,7 @@ Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed.
 Lemma impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R.
 Proof.
   unseal; intros HQ; split=> n x ?? n' x' ????. apply HQ;
-    naive_solver eauto using uPred_mono, uPred_closed, cmra_included_includedN.
+    naive_solver eauto using uPred_mono, cmra_included_includedN.
 Qed.
 Lemma impl_elim P Q R : (P ⊢ Q → R) → (P ⊢ Q) → P ⊢ R.
 Proof. by unseal; intros HP HP'; split=> n x ??; apply HP with n x, HP'. Qed.
@@ -432,7 +419,7 @@ Lemma wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R.
 Proof.
   unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto.
   exists x, x'; split_and?; auto.
-  eapply uPred_closed with n; eauto using cmra_validN_op_l.
+  eapply uPred_mono with n x; eauto using cmra_validN_op_l.
 Qed.
 Lemma wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R.
 Proof.
@@ -486,14 +473,14 @@ Qed.
 Lemma persistently_impl_plainly P Q : (■ P → □ Q) ⊢ □ (■ P → Q).
 Proof.
   unseal; split=> /= n x ? HPQ n' x' ????.
-  eapply uPred_mono with (core x), cmra_included_includedN; auto.
+  eapply uPred_mono with n' (core x)=>//; [|by apply cmra_included_includedN].
   apply (HPQ n' x); eauto using cmra_validN_le.
 Qed.
 
 Lemma plainly_impl_plainly P Q : (■ P → ■ Q) ⊢ ■ (■ P → Q).
 Proof.
   unseal; split=> /= n x ? HPQ n' x' ????.
-  eapply uPred_mono with ε, cmra_included_includedN; auto.
+  eapply uPred_mono with n' ε=>//; [|by apply cmra_included_includedN].
   apply (HPQ n' x); eauto using cmra_validN_le.
 Qed.
 
@@ -505,7 +492,7 @@ Qed.
 Lemma löb P : (▷ P → P) ⊢ P.
 Proof.
   unseal; split=> n x ? HP; induction n as [|n IH]; [by apply HP|].
-  apply HP, IH, uPred_closed with (S n); eauto using cmra_validN_S.
+  apply HP, IH, uPred_mono with (S n) x; eauto using cmra_validN_S.
 Qed.
 Lemma later_forall_2 {A} (Φ : A → uPred M) : (∀ a, ▷ Φ a) ⊢ ▷ ∀ a, Φ a.
 Proof. unseal; by split=> -[|n] x. Qed.
@@ -526,8 +513,7 @@ Qed.
 Lemma later_false_excluded_middle P : ▷ P ⊢ ▷ False ∨ (▷ False → P).
 Proof.
   unseal; split=> -[|n] x ? /= HP; [by left|right].
-  intros [|n'] x' ????; [|done].
-  eauto using uPred_closed, uPred_mono, cmra_included_includedN.
+  intros [|n'] x' ????; eauto using uPred_mono, cmra_included_includedN.
 Qed.
 Lemma persistently_later P : □ ▷ P ⊣⊢ ▷ □ P.
 Proof. by unseal. Qed.
@@ -577,7 +563,7 @@ Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed.
 Lemma bupd_intro P : P ==∗ P.
 Proof.
   unseal. split=> n x ? HP k yf ?; exists x; split; first done.
-  apply uPred_closed with n; eauto using cmra_validN_op_l.
+  apply uPred_mono with n x; eauto using cmra_validN_op_l.
 Qed.
 Lemma bupd_mono P Q : (P ⊢ Q) → (|==> P) ==∗ Q.
 Proof.
@@ -593,8 +579,7 @@ Proof.
   destruct (HP k (x2 â‹… yf)) as (x'&?&?); eauto.
   { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. }
   exists (x' â‹… x2); split; first by rewrite -assoc.
-  exists x', x2; split_and?; auto.
-  apply uPred_closed with n; eauto 3 using cmra_validN_op_l, cmra_validN_op_r.
+  exists x', x2. eauto using uPred_mono, cmra_validN_op_l, cmra_validN_op_r.
 Qed.
 Lemma bupd_ownM_updateP x (Φ : M → Prop) :
   x ~~>: Φ → uPred_ownM x ==∗ ∃ y, ⌜Φ y⌝ ∧ uPred_ownM y.
diff --git a/theories/base_logic/upred.v b/theories/base_logic/upred.v
index 57d91bc94e298c372cb47dce4b70aae5a3243469..e17fe1dc8388e588fd1185f4b153f14654fc997e 100644
--- a/theories/base_logic/upred.v
+++ b/theories/base_logic/upred.v
@@ -6,43 +6,46 @@ Set Default Proof Using "Type".
     base_logic.base_logic; that will also give you all the primitive
     and many derived laws for the logic. *)
 
+(* A good way of understanding this definition of the uPred OFE is to
+   consider the OFE uPred0 of monotonous SProp predicates. That is,
+   uPred0 is the OFE of non-expansive functions from M to SProp that
+   are monotonous with respect to CMRA inclusion. This notion of
+   monotonicity has to be stated in the SProp logic. Together with the
+   usual closedness property of SProp, this gives exactly uPred_mono.
+
+   Then, we quotient uPred0 *in the sProp logic* with respect to
+   equivalence on valid elements of M. That is, we quotient with
+   respect to the following *sProp* equivalence relation:
+     P1 ≡ P2 := ∀ x, ✓ x → (P1(x) ↔ P2(x))       (1)
+   When seen from the ambiant logic, obtaining this quotient requires
+   definig both a custom Equiv and Dist.
+
+
+   It is worth noting that this equivalence relation admits canonical
+   representatives. More precisely, one can show that every
+   equivalence class contains exactly one element P0 such that:
+     ∀ x, (✓ x → P0(x)) → P0(x)                 (2)
+   (Again, this assertion has to be understood in sProp). Intuitively,
+   this says that P0 trivially holds whenever the resource is invalid.
+   Starting from any element P, one can find this canonical
+   representative by choosing:
+     P0(x) := ✓ x → P(x)                        (3)
+
+   Hence, as an alternative definition of uPred, we could use the set
+   of canonical representatives (i.e., the subtype of monotonous
+   sProp predicates that verify (2)). This alternative definition would
+   save us from using a quotient. However, the definitions of the various
+   connectives would get more complicated, because we have to make sure
+   they all verify (2), which sometimes requires some adjustments. We
+   would moreover need to prove one more property for every logical
+   connective.
+ *)
+
 Record uPred (M : ucmraT) : Type := IProp {
   uPred_holds :> nat → M → Prop;
 
-  (* [uPred_mono] is used to prove non-expansiveness (guaranteed by
-     [uPred_ne]). Therefore, it is important that we do not restrict
-     it to only valid elements. *)
-  uPred_mono n x1 x2 : uPred_holds n x1 → x1 ≼{n} x2 → uPred_holds n x2;
-
-  (* We have to restrict this to hold only for valid elements,
-     otherwise this condition is no longer limit preserving, and uPred
-     does no longer form a COFE (i.e., [uPred_compl] breaks). This is
-     because the distance and equivalence on this cofe ignores the
-     truth value on invalid elements. This, in turn, is required by
-     the fact that entailment has to ignore invalid elements, which is
-     itself essential for proving [ownM_valid].
-
-     We could, actually, remove this restriction and make this
-     condition apply even to invalid elements: we have proved that
-     uPred is isomorphic to a sub-COFE of the COFE of predicates that
-     are monotonous both with respect to the step index and with
-     respect to x. However, that would essentially require changing
-     (by making it more complicated) the model of many connectives of
-     the logic, which we don't want.
-     This sub-COFE is the sub-COFE of monotonous sProp predicates P
-     such that the following sProp assertion is valid:
-          ∀ x, (V(x) → P(x)) → P(x)
-     Where V is the validity predicate.
-
-     Another way of saying that this is equivalent to this definition of
-     uPred is to notice that our definition of uPred is equivalent to
-     quotienting the COFE of monotonous sProp predicates with the
-     following (sProp) equivalence relation:
-       P1 ≡ P2  :=  ∀ x, V(x) → (P1(x) ↔ P2(x))
-     whose equivalence classes appear to all have one only canonical
-     representative such that ∀ x, (V(x) → P(x)) → P(x).
- *)
-  uPred_closed n1 n2 x : uPred_holds n1 x → n2 ≤ n1 → ✓{n2} x → uPred_holds n2 x
+  uPred_mono n1 n2 x1 x2 :
+    uPred_holds n1 x1 → x1 ≼{n1} x2 → n2 ≤ n1 → uPred_holds n2 x2
 }.
 Arguments uPred_holds {_} _ _ _ : simpl never.
 Add Printing Constructor uPred.
@@ -77,15 +80,17 @@ Section cofe.
   Canonical Structure uPredC : ofeT := OfeT (uPred M) uPred_ofe_mixin.
 
   Program Definition uPred_compl : Compl uPredC := λ c,
-    {| uPred_holds n x := c n n x |}.
-  Next Obligation. naive_solver eauto using uPred_mono. Qed.
+    {| uPred_holds n x := ∀ n', n' ≤ n → ✓{n'}x → c n' n' x |}.
   Next Obligation.
-    intros c n1 n2 x ???; simpl in *.
-    apply (chain_cauchy c n2 n1); eauto using uPred_closed.
+    move=> /= c n1 n2 x1 x2 HP Hx12 Hn12 n3 Hn23 Hv. eapply uPred_mono.
+    eapply HP, cmra_validN_includedN, cmra_includedN_le=>//; lia.
+    eapply cmra_includedN_le=>//; lia. done.
   Qed.
   Global Program Instance uPred_cofe : Cofe uPredC := {| compl := uPred_compl |}.
   Next Obligation.
-    intros n c; split=>i x ??; symmetry; apply (chain_cauchy c i n); auto.
+    intros n c; split=>i x Hin Hv.
+    etrans; [|by symmetry; apply (chain_cauchy c i n)]. split=>H; [by apply H|].
+    repeat intro. apply (chain_cauchy c n' i)=>//. by eapply uPred_mono.
   Qed.
 End cofe.
 Arguments uPredC : clear implicits.
@@ -100,8 +105,24 @@ Proof. by intros x1 x2 Hx; apply uPred_ne, equiv_dist. Qed.
 Lemma uPred_holds_ne {M} (P Q : uPred M) n1 n2 x :
   P ≡{n2}≡ Q → n2 ≤ n1 → ✓{n2} x → Q n1 x → P n2 x.
 Proof.
-  intros [Hne] ???. eapply Hne; try done.
-  eapply uPred_closed; eauto using cmra_validN_le.
+  intros [Hne] ???. eapply Hne; try done. eauto using uPred_mono, cmra_validN_le.
+Qed.
+
+(* Equivalence to the definition of uPred in the appendix. *)
+Lemma uPred_alt {M : ucmraT} (P: nat → M → Prop) :
+  (∀ n1 n2 x1 x2, P n1 x1 → x1 ≼{n1} x2 → n2 ≤ n1 → P n2 x2) ↔
+  ( (∀ x n1 n2, n2 ≤ n1 → P n1 x → P n2 x) (* Pointwise down-closed *)
+  ∧ (∀ n x1 x2, x1 ≡{n}≡ x2 → ∀ m, m ≤ n → P m x1 ↔ P m x2) (* Non-expansive *)
+  ∧ (∀ n x1 x2, x1 ≼{n} x2 → ∀ m, m ≤ n → P m x1 → P m x2) (* Monotonicity *)
+  ).
+Proof.
+  (* Provide this lemma to eauto. *)
+  assert (∀ n1 n2 (x1 x2 : M), n2 ≤ n1 → x1 ≡{n1}≡ x2 → x1 ≼{n2} x2).
+  { intros ????? H. eapply cmra_includedN_le; last done. by rewrite H. }
+  (* Now go ahead. *)
+  split.
+  - intros Hupred. repeat split; eauto using cmra_includedN_le.
+  - intros (Hdown & _ & Hmono) **. eapply Hmono; [done..|]. eapply Hdown; done.
 Qed.
 
 (** functor *)
@@ -109,7 +130,6 @@ Program Definition uPred_map {M1 M2 : ucmraT} (f : M2 -n> M1)
   `{!CmraMorphism f} (P : uPred M1) :
   uPred M2 := {| uPred_holds n x := P n (f x) |}.
 Next Obligation. naive_solver eauto using uPred_mono, cmra_morphism_monotoneN. Qed.
-Next Obligation. naive_solver eauto using uPred_closed, cmra_morphism_validN. Qed.
 
 Instance uPred_map_ne {M1 M2 : ucmraT} (f : M2 -n> M1)
   `{!CmraMorphism f} n : Proper (dist n ==> dist n) (uPred_map f).
@@ -167,7 +187,7 @@ Inductive uPred_entails {M} (P Q : uPred M) : Prop :=
 Hint Extern 0 (uPred_entails _ _) => reflexivity.
 Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M).
 
-Hint Resolve uPred_mono uPred_closed : uPred_def.
+Hint Resolve uPred_mono : uPred_def.
 
 (** Notations *)
 Notation "P ⊢ Q" := (uPred_entails P%I Q%I)