diff --git a/stdpp/gmultiset.v b/stdpp/gmultiset.v index 2d10fb407afb128360f1dc1be1e73336f5dcfc36..3b840459a22bc8c26330611ef42cbeedeb664469 100644 --- a/stdpp/gmultiset.v +++ b/stdpp/gmultiset.v @@ -159,6 +159,13 @@ Section basic_lemmas. Global Instance gmultiset_elem_of_dec : RelDecision (∈@{gmultiset A}). Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined. + + Lemma gmultiset_elem_of_dom x X : x ∈ dom X ↔ x ∈ X. + Proof. + unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity. + destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some. + destruct (X !! x); naive_solver lia. + Qed. End basic_lemmas. (** * A solver for multisets *) @@ -299,6 +306,9 @@ Section multiset_unfold. intros ??; constructor. rewrite gmultiset_elem_of_intersection. by rewrite (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q). Qed. + Global Instance set_unfold_gmultiset_dom x X : + SetUnfoldElemOf x (dom X) (x ∈ X). + Proof. constructor. apply gmultiset_elem_of_dom. Qed. End multiset_unfold. (** Step 3: instantiate hypotheses *) @@ -554,12 +564,6 @@ Section more_lemmas. exists (x,n); split; [|by apply elem_of_map_to_list]. apply elem_of_replicate; auto with lia. Qed. - Lemma gmultiset_elem_of_dom x X : x ∈ dom X ↔ x ∈ X. - Proof. - unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity. - destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some. - destruct (X !! x); naive_solver lia. - Qed. (** Properties of the set_fold operation *) Lemma gmultiset_set_fold_empty {B} (f : A → B → B) (b : B) :