From iris.algebra Require Export cmra. From iris.prelude Require Export list. From iris.base_logic Require Import base_logic. From iris.algebra Require Import updates local_updates. Section cofe. Context {A : ofeT}. Instance list_dist : Dist (list A) := λ n, Forall2 (dist n). Lemma list_dist_lookup n l1 l2 : l1 ≡{n}≡ l2 ↔ ∀ i, l1 !! i ≡{n}≡ l2 !! i. Proof. setoid_rewrite dist_option_Forall2. apply Forall2_lookup. Qed. Global Instance cons_ne n : Proper (dist n ==> dist n ==> dist n) (@cons A) := _. Global Instance app_ne n : Proper (dist n ==> dist n ==> dist n) (@app A) := _. Global Instance length_ne n : Proper (dist n ==> (=)) (@length A) := _. Global Instance tail_ne n : Proper (dist n ==> dist n) (@tail A) := _. Global Instance take_ne n : Proper (dist n ==> dist n) (@take A n) := _. Global Instance drop_ne n : Proper (dist n ==> dist n) (@drop A n) := _. Global Instance list_lookup_ne n i : Proper (dist n ==> dist n) (lookup (M:=list A) i). Proof. intros ???. by apply dist_option_Forall2, Forall2_lookup. Qed. Global Instance list_alter_ne n f i : Proper (dist n ==> dist n) f → Proper (dist n ==> dist n) (alter (M:=list A) f i) := _. Global Instance list_insert_ne n i : Proper (dist n ==> dist n ==> dist n) (insert (M:=list A) i) := _. Global Instance list_inserts_ne n i : Proper (dist n ==> dist n ==> dist n) (@list_inserts A i) := _. Global Instance list_delete_ne n i : Proper (dist n ==> dist n) (delete (M:=list A) i) := _. Global Instance option_list_ne n : Proper (dist n ==> dist n) (@option_list A). Proof. intros ???; by apply Forall2_option_list, dist_option_Forall2. Qed. Global Instance list_filter_ne n P `{∀ x, Decision (P x)} : Proper (dist n ==> iff) P → Proper (dist n ==> dist n) (filter (B:=list A) P) := _. Global Instance replicate_ne n : Proper (dist n ==> dist n) (@replicate A n) := _. Global Instance reverse_ne n : Proper (dist n ==> dist n) (@reverse A) := _. Global Instance last_ne n : Proper (dist n ==> dist n) (@last A). Proof. intros ???; by apply dist_option_Forall2, Forall2_last. Qed. Global Instance resize_ne n : Proper (dist n ==> dist n ==> dist n) (@resize A n) := _. Definition list_ofe_mixin : OfeMixin (list A). Proof. split. - intros l k. rewrite equiv_Forall2 -Forall2_forall. split; induction 1; constructor; intros; try apply equiv_dist; auto. - apply _. - rewrite /dist /list_dist. eauto using Forall2_impl, dist_S. Qed. Canonical Structure listC := OfeT (list A) list_ofe_mixin. Program Definition list_chain (c : chain listC) (x : A) (k : nat) : chain A := {| chain_car n := from_option id x (c n !! k) |}. Next Obligation. intros c x k n i ?. by rewrite /= (chain_cauchy c n i). Qed. Definition list_compl `{Cofe A} : Compl listC := λ c, match c 0 with | [] => [] | x :: _ => compl ∘ list_chain c x <$> seq 0 (length (c 0)) end. Global Program Instance list_cofe `{Cofe A} : Cofe listC := {| compl := list_compl |}. Next Obligation. intros ? n c; rewrite /compl /list_compl. destruct (c 0) as [|x l] eqn:Hc0 at 1. { by destruct (chain_cauchy c 0 n); auto with omega. } rewrite -(λ H, length_ne _ _ _ (chain_cauchy c 0 n H)); last omega. apply Forall2_lookup=> i. rewrite -dist_option_Forall2 list_lookup_fmap. destruct (decide (i < length (c n))); last first. { rewrite lookup_seq_ge ?lookup_ge_None_2; auto with omega. } rewrite lookup_seq //= (conv_compl n (list_chain c _ _)) /=. destruct (lookup_lt_is_Some_2 (c n) i) as [? Hcn]; first done. by rewrite Hcn. Qed. Global Instance list_discrete : Discrete A → Discrete listC. Proof. induction 2; constructor; try apply (timeless _); auto. Qed. Global Instance nil_timeless : Timeless (@nil A). Proof. inversion_clear 1; constructor. Qed. Global Instance cons_timeless x l : Timeless x → Timeless l → Timeless (x :: l). Proof. intros ??; inversion_clear 1; constructor; by apply timeless. Qed. End cofe. Arguments listC : clear implicits. (** Functor *) Lemma list_fmap_ext_ne {A} {B : ofeT} (f g : A → B) (l : list A) n : (∀ x, f x ≡{n}≡ g x) → f <$> l ≡{n}≡ g <$> l. Proof. intros Hf. by apply Forall2_fmap, Forall_Forall2, Forall_true. Qed. Instance list_fmap_ne {A B : ofeT} (f : A → B) n: Proper (dist n ==> dist n) f → Proper (dist n ==> dist n) (fmap (M:=list) f). Proof. intros Hf l k ?; by eapply Forall2_fmap, Forall2_impl; eauto. Qed. Definition listC_map {A B} (f : A -n> B) : listC A -n> listC B := CofeMor (fmap f : listC A → listC B). Instance listC_map_ne A B n : Proper (dist n ==> dist n) (@listC_map A B). Proof. intros f g ? l. by apply list_fmap_ext_ne. Qed. Program Definition listCF (F : cFunctor) : cFunctor := {| cFunctor_car A B := listC (cFunctor_car F A B); cFunctor_map A1 A2 B1 B2 fg := listC_map (cFunctor_map F fg) |}. Next Obligation. by intros F A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_ne. Qed. Next Obligation. intros F A B x. rewrite /= -{2}(list_fmap_id x). apply list_fmap_equiv_ext=>y. apply cFunctor_id. Qed. Next Obligation. intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose. apply list_fmap_equiv_ext=>y; apply cFunctor_compose. Qed. Instance listCF_contractive F : cFunctorContractive F → cFunctorContractive (listCF F). Proof. by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, cFunctor_contractive. Qed. (* CMRA *) Section cmra. Context {A : ucmraT}. Implicit Types l : list A. Local Arguments op _ _ !_ !_ / : simpl nomatch. Instance list_op : Op (list A) := fix go l1 l2 := let _ : Op _ := @go in match l1, l2 with | [], _ => l2 | _, [] => l1 | x :: l1, y :: l2 => x ⋅ y :: l1 ⋅ l2 end. Instance list_pcore : PCore (list A) := λ l, Some (core <$> l). Instance list_valid : Valid (list A) := Forall (λ x, ✓ x). Instance list_validN : ValidN (list A) := λ n, Forall (λ x, ✓{n} x). Lemma cons_valid l x : ✓ (x :: l) ↔ ✓ x ∧ ✓ l. Proof. apply Forall_cons. Qed. Lemma cons_validN n l x : ✓{n} (x :: l) ↔ ✓{n} x ∧ ✓{n} l. Proof. apply Forall_cons. Qed. Lemma app_valid l1 l2 : ✓ (l1 ++ l2) ↔ ✓ l1 ∧ ✓ l2. Proof. apply Forall_app. Qed. Lemma app_validN n l1 l2 : ✓{n} (l1 ++ l2) ↔ ✓{n} l1 ∧ ✓{n} l2. Proof. apply Forall_app. Qed. Lemma list_lookup_valid l : ✓ l ↔ ∀ i, ✓ (l !! i). Proof. rewrite {1}/valid /list_valid Forall_lookup; split. - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|]. - intros Hl i x Hi. move: (Hl i); by rewrite Hi. Qed. Lemma list_lookup_validN n l : ✓{n} l ↔ ∀ i, ✓{n} (l !! i). Proof. rewrite {1}/validN /list_validN Forall_lookup; split. - intros Hl i. by destruct (l !! i) as [x|] eqn:?; [apply (Hl i)|]. - intros Hl i x Hi. move: (Hl i); by rewrite Hi. Qed. Lemma list_lookup_op l1 l2 i : (l1 ⋅ l2) !! i = l1 !! i ⋅ l2 !! i. Proof. revert i l2. induction l1 as [|x l1]; intros [|i] [|y l2]; by rewrite /= ?left_id_L ?right_id_L. Qed. Lemma list_lookup_core l i : core l !! i = core (l !! i). Proof. rewrite /core /= list_lookup_fmap. destruct (l !! i); by rewrite /= ?Some_core. Qed. Lemma list_lookup_included l1 l2 : l1 ≼ l2 ↔ ∀ i, l1 !! i ≼ l2 !! i. Proof. split. { intros [l Hl] i. exists (l !! i). by rewrite Hl list_lookup_op. } revert l1. induction l2 as [|y l2 IH]=>-[|x l1] Hl. - by exists []. - destruct (Hl 0) as [[z|] Hz]; inversion Hz. - by exists (y :: l2). - destruct (IH l1) as [l3 ?]; first (intros i; apply (Hl (S i))). destruct (Hl 0) as [[z|] Hz]; inversion_clear Hz; simplify_eq/=. + exists (z :: l3); by constructor. + exists (core x :: l3); constructor; by rewrite ?cmra_core_r. Qed. Definition list_cmra_mixin : CMRAMixin (list A). Proof. apply cmra_total_mixin. - eauto. - intros n l l1 l2; rewrite !list_dist_lookup=> Hl i. by rewrite !list_lookup_op Hl. - intros n l1 l2 Hl; by rewrite /core /= Hl. - intros n l1 l2; rewrite !list_dist_lookup !list_lookup_validN=> Hl ? i. by rewrite -Hl. - intros l. rewrite list_lookup_valid. setoid_rewrite list_lookup_validN. setoid_rewrite cmra_valid_validN. naive_solver. - intros n x. rewrite !list_lookup_validN. auto using cmra_validN_S. - intros l1 l2 l3; rewrite list_equiv_lookup=> i. by rewrite !list_lookup_op assoc. - intros l1 l2; rewrite list_equiv_lookup=> i. by rewrite !list_lookup_op comm. - intros l; rewrite list_equiv_lookup=> i. by rewrite list_lookup_op list_lookup_core cmra_core_l. - intros l; rewrite list_equiv_lookup=> i. by rewrite !list_lookup_core cmra_core_idemp. - intros l1 l2; rewrite !list_lookup_included=> Hl i. rewrite !list_lookup_core. by apply cmra_core_mono. - intros n l1 l2. rewrite !list_lookup_validN. setoid_rewrite list_lookup_op. eauto using cmra_validN_op_l. - intros n l. induction l as [|x l IH]=> -[|y1 l1] [|y2 l2] Hl; inversion_clear 1. + by exists [], []. + exists [], (x :: l); by repeat constructor. + exists (x :: l), []; by repeat constructor. + inversion_clear Hl. destruct (IH l1 l2) as (l1'&l2'&?&?&?), (cmra_extend n x y1 y2) as (y1'&y2'&?&?&?); simplify_eq/=; auto. exists (y1' :: l1'), (y2' :: l2'); repeat constructor; auto. Qed. Canonical Structure listR := CMRAT (list A) list_ofe_mixin list_cmra_mixin. Global Instance empty_list : Empty (list A) := []. Definition list_ucmra_mixin : UCMRAMixin (list A). Proof. split. - constructor. - by intros l. - by constructor. Qed. Canonical Structure listUR := UCMRAT (list A) list_ofe_mixin list_cmra_mixin list_ucmra_mixin. Global Instance list_cmra_discrete : CMRADiscrete A → CMRADiscrete listR. Proof. split; [apply _|]=> l; rewrite list_lookup_valid list_lookup_validN=> Hl i. by apply cmra_discrete_valid. Qed. Global Instance list_persistent l : (∀ x : A, Persistent x) → Persistent l. Proof. intros ?; constructor; apply list_equiv_lookup=> i. by rewrite list_lookup_core (persistent_core (l !! i)). Qed. (** Internalized properties *) Lemma list_equivI {M} l1 l2 : l1 ≡ l2 ⊣⊢ (∀ i, l1 !! i ≡ l2 !! i : uPred M). Proof. uPred.unseal; constructor=> n x ?. apply list_dist_lookup. Qed. Lemma list_validI {M} l : ✓ l ⊣⊢ (∀ i, ✓ (l !! i) : uPred M). Proof. uPred.unseal; constructor=> n x ?. apply list_lookup_validN. Qed. End cmra. Arguments listR : clear implicits. Arguments listUR : clear implicits. Instance list_singletonM {A : ucmraT} : SingletonM nat A (list A) := λ n x, replicate n ∅ ++ [x]. Section properties. Context {A : ucmraT}. Implicit Types l : list A. Implicit Types x y z : A. Local Arguments op _ _ !_ !_ / : simpl nomatch. Local Arguments cmra_op _ !_ !_ / : simpl nomatch. Local Arguments ucmra_op _ !_ !_ / : simpl nomatch. Lemma list_lookup_opM l mk i : (l ⋅? mk) !! i = l !! i ⋅ (mk ≫= (!! i)). Proof. destruct mk; by rewrite /= ?list_lookup_op ?right_id_L. Qed. Global Instance list_op_nil_l : LeftId (=) (@nil A) op. Proof. done. Qed. Global Instance list_op_nil_r : RightId (=) (@nil A) op. Proof. by intros []. Qed. Lemma list_op_app l1 l2 l3 : (l1 ++ l3) ⋅ l2 = (l1 ⋅ take (length l1) l2) ++ (l3 ⋅ drop (length l1) l2). Proof. revert l2 l3. induction l1 as [|x1 l1]=> -[|x2 l2] [|x3 l3]; f_equal/=; auto. Qed. Lemma list_op_app_le l1 l2 l3 : length l2 ≤ length l1 → (l1 ++ l3) ⋅ l2 = (l1 ⋅ l2) ++ l3. Proof. intros ?. by rewrite list_op_app take_ge // drop_ge // right_id_L. Qed. Lemma list_lookup_validN_Some n l i x : ✓{n} l → l !! i ≡{n}≡ Some x → ✓{n} x. Proof. move=> /list_lookup_validN /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed. Lemma list_lookup_valid_Some l i x : ✓ l → l !! i ≡ Some x → ✓ x. Proof. move=> /list_lookup_valid /(_ i)=> Hl Hi; move: Hl. by rewrite Hi. Qed. Lemma list_op_length l1 l2 : length (l1 ⋅ l2) = max (length l1) (length l2). Proof. revert l2. induction l1; intros [|??]; f_equal/=; auto. Qed. Lemma replicate_valid n (x : A) : ✓ x → ✓ replicate n x. Proof. apply Forall_replicate. Qed. Global Instance list_singletonM_ne n i : Proper (dist n ==> dist n) (@list_singletonM A i). Proof. intros l1 l2 ?. apply Forall2_app; by repeat constructor. Qed. Global Instance list_singletonM_proper i : Proper ((≡) ==> (≡)) (list_singletonM i) := ne_proper _. Lemma elem_of_list_singletonM i z x : z ∈ {[i := x]} → z = ∅ ∨ z = x. Proof. rewrite elem_of_app elem_of_list_singleton elem_of_replicate. naive_solver. Qed. Lemma list_lookup_singletonM i x : {[ i := x ]} !! i = Some x. Proof. induction i; by f_equal/=. Qed. Lemma list_lookup_singletonM_ne i j x : i ≠ j → {[ i := x ]} !! j = None ∨ {[ i := x ]} !! j = Some ∅. Proof. revert j; induction i; intros [|j]; naive_solver auto with omega. Qed. Lemma list_singletonM_validN n i x : ✓{n} {[ i := x ]} ↔ ✓{n} x. Proof. rewrite list_lookup_validN. split. { move=> /(_ i). by rewrite list_lookup_singletonM. } intros Hx j; destruct (decide (i = j)); subst. - by rewrite list_lookup_singletonM. - destruct (list_lookup_singletonM_ne i j x) as [Hi|Hi]; first done; rewrite Hi; by try apply (ucmra_unit_validN (A:=A)). Qed. Lemma list_singleton_valid i x : ✓ {[ i := x ]} ↔ ✓ x. Proof. rewrite !cmra_valid_validN. by setoid_rewrite list_singletonM_validN. Qed. Lemma list_singletonM_length i x : length {[ i := x ]} = S i. Proof. rewrite /singletonM /list_singletonM app_length replicate_length /=; lia. Qed. Lemma list_core_singletonM i (x : A) : core {[ i := x ]} ≡ {[ i := core x ]}. Proof. rewrite /singletonM /list_singletonM. by rewrite {1}/core /= fmap_app fmap_replicate (persistent_core ∅). Qed. Lemma list_op_singletonM i (x y : A) : {[ i := x ]} ⋅ {[ i := y ]} ≡ {[ i := x ⋅ y ]}. Proof. rewrite /singletonM /list_singletonM /=. induction i; constructor; rewrite ?left_id; auto. Qed. Lemma list_alter_singletonM f i x : alter f i {[i := x]} = {[i := f x]}. Proof. rewrite /singletonM /list_singletonM /=. induction i; f_equal/=; auto. Qed. Global Instance list_singleton_persistent i (x : A) : Persistent x → Persistent {[ i := x ]}. Proof. by rewrite !persistent_total list_core_singletonM=> ->. Qed. (* Update *) Lemma list_singleton_updateP (P : A → Prop) (Q : list A → Prop) x : x ~~>: P → (∀ y, P y → Q [y]) → [x] ~~>: Q. Proof. rewrite !cmra_total_updateP=> Hup HQ n lf /list_lookup_validN Hv. destruct (Hup n (from_option id ∅ (lf !! 0))) as (y&?&Hv'). { move: (Hv 0). by destruct lf; rewrite /= ?right_id. } exists [y]; split; first by auto. apply list_lookup_validN=> i. move: (Hv i) Hv'. by destruct i, lf; rewrite /= ?right_id. Qed. Lemma list_singleton_updateP' (P : A → Prop) x : x ~~>: P → [x] ~~>: λ k, ∃ y, k = [y] ∧ P y. Proof. eauto using list_singleton_updateP. Qed. Lemma list_singleton_update x y : x ~~> y → [x] ~~> [y]. Proof. rewrite !cmra_update_updateP; eauto using list_singleton_updateP with subst. Qed. Lemma app_updateP (P1 P2 Q : list A → Prop) l1 l2 : l1 ~~>: P1 → l2 ~~>: P2 → (∀ k1 k2, P1 k1 → P2 k2 → length l1 = length k1 ∧ Q (k1 ++ k2)) → l1 ++ l2 ~~>: Q. Proof. rewrite !cmra_total_updateP=> Hup1 Hup2 HQ n lf. rewrite list_op_app app_validN=> -[??]. destruct (Hup1 n (take (length l1) lf)) as (k1&?&?); auto. destruct (Hup2 n (drop (length l1) lf)) as (k2&?&?); auto. exists (k1 ++ k2). rewrite list_op_app app_validN. by destruct (HQ k1 k2) as [<- ?]. Qed. Lemma app_update l1 l2 k1 k2 : length l1 = length k1 → l1 ~~> k1 → l2 ~~> k2 → l1 ++ l2 ~~> k1 ++ k2. Proof. rewrite !cmra_update_updateP; eauto using app_updateP with subst. Qed. Lemma cons_updateP (P1 : A → Prop) (P2 Q : list A → Prop) x l : x ~~>: P1 → l ~~>: P2 → (∀ y k, P1 y → P2 k → Q (y :: k)) → x :: l ~~>: Q. Proof. intros. eapply (app_updateP _ _ _ [x]); naive_solver eauto using list_singleton_updateP'. Qed. Lemma cons_updateP' (P1 : A → Prop) (P2 : list A → Prop) x l : x ~~>: P1 → l ~~>: P2 → x :: l ~~>: λ k, ∃ y k', k = y :: k' ∧ P1 y ∧ P2 k'. Proof. eauto 10 using cons_updateP. Qed. Lemma cons_update x y l k : x ~~> y → l ~~> k → x :: l ~~> y :: k. Proof. rewrite !cmra_update_updateP; eauto using cons_updateP with subst. Qed. Lemma list_middle_updateP (P : A → Prop) (Q : list A → Prop) l1 x l2 : x ~~>: P → (∀ y, P y → Q (l1 ++ y :: l2)) → l1 ++ x :: l2 ~~>: Q. Proof. intros. eapply app_updateP. - by apply cmra_update_updateP. - by eapply cons_updateP', cmra_update_updateP. - naive_solver. Qed. Lemma list_middle_update l1 l2 x y : x ~~> y → l1 ++ x :: l2 ~~> l1 ++ y :: l2. Proof. rewrite !cmra_update_updateP=> ?; eauto using list_middle_updateP with subst. Qed. (* FIXME Lemma list_middle_local_update l1 l2 x y ml : x ~l~> y @ ml ≫= (!! length l1) → l1 ++ x :: l2 ~l~> l1 ++ y :: l2 @ ml. Proof. intros [Hxy Hxy']; split. - intros n; rewrite !list_lookup_validN=> Hl i; move: (Hl i). destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst. + by rewrite !list_lookup_opM !lookup_app_l. + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM; apply (Hxy n). + rewrite !(cons_middle _ l1 l2) !assoc. rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia. - intros n mk; rewrite !list_lookup_validN !list_dist_lookup => Hl Hl' i. move: (Hl i) (Hl' i). destruct (lt_eq_lt_dec i (length l1)) as [[?|?]|?]; subst. + by rewrite !list_lookup_opM !lookup_app_l. + rewrite !list_lookup_opM !list_lookup_middle // !Some_op_opM !inj_iff. apply (Hxy' n). + rewrite !(cons_middle _ l1 l2) !assoc. rewrite !list_lookup_opM !lookup_app_r !app_length //=; lia. Qed. Lemma list_singleton_local_update i x y ml : x ~l~> y @ ml ≫= (!! i) → {[ i := x ]} ~l~> {[ i := y ]} @ ml. Proof. intros; apply list_middle_local_update. by rewrite replicate_length. Qed. *) End properties. (** Functor *) Instance list_fmap_cmra_monotone {A B : ucmraT} (f : A → B) `{!CMRAMonotone f} : CMRAMonotone (fmap f : list A → list B). Proof. split; try apply _. - intros n l. rewrite !list_lookup_validN=> Hl i. rewrite list_lookup_fmap. by apply (cmra_monotone_validN (fmap f : option A → option B)). - intros l1 l2. rewrite !list_lookup_included=> Hl i. rewrite !list_lookup_fmap. by apply (cmra_monotone (fmap f : option A → option B)). Qed. Program Definition listURF (F : urFunctor) : urFunctor := {| urFunctor_car A B := listUR (urFunctor_car F A B); urFunctor_map A1 A2 B1 B2 fg := listC_map (urFunctor_map F fg) |}. Next Obligation. by intros F ???? n f g Hfg; apply listC_map_ne, urFunctor_ne. Qed. Next Obligation. intros F A B x. rewrite /= -{2}(list_fmap_id x). apply list_fmap_equiv_ext=>y. apply urFunctor_id. Qed. Next Obligation. intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -list_fmap_compose. apply list_fmap_equiv_ext=>y; apply urFunctor_compose. Qed. Instance listURF_contractive F : urFunctorContractive F → urFunctorContractive (listURF F). Proof. by intros ? A1 A2 B1 B2 n f g Hfg; apply listC_map_ne, urFunctor_contractive. Qed.