From stdpp Require Export vector. From iris.algebra Require Export ofe. From iris.algebra Require Import list. Set Default Proof Using "Type". Section ofe. Context {A : ofeT}. Instance vec_equiv m : Equiv (vec A m) := equiv (A:=list A). Instance vec_dist m : Dist (vec A m) := dist (A:=list A). Definition vec_ofe_mixin m : OfeMixin (vec A m). Proof. by apply (iso_ofe_mixin vec_to_list). Qed. Canonical Structure vecC m : ofeT := OfeT (vec A m) (vec_ofe_mixin m). Global Instance list_cofe `{Cofe A} m : Cofe (vecC m). Proof. apply: (iso_cofe_subtype (λ l : list A, length l = m) (λ l, eq_rect _ (vec A) (list_to_vec l) m) vec_to_list)=> //. - intros v []. by rewrite /= vec_to_list_of_list. - intros c. by rewrite (conv_compl 0 (chain_map _ c)) /= vec_to_list_length. Qed. Global Instance vnil_discrete : Discrete (@vnil A). Proof. intros v _. by inv_vec v. Qed. Global Instance vcons_discrete n x (v : vec A n) : Discrete x → Discrete v → Discrete (x ::: v). Proof. intros ?? v' ?. inv_vec v'=>x' v'. inversion_clear 1. constructor. by apply discrete. change (v ≡ v'). by apply discrete. Qed. Global Instance vec_ofe_discrete m : OfeDiscrete A → OfeDiscrete (vecC m). Proof. intros ? v. induction v; apply _. Qed. End ofe. Arguments vecC : clear implicits. Typeclasses Opaque vec_dist. Section proper. Context {A : ofeT}. Global Instance vcons_ne n : Proper (dist n ==> forall_relation (λ x, dist n ==> dist n)) (@vcons A). Proof. by constructor. Qed. Global Instance vcons_proper : Proper (equiv ==> forall_relation (λ x, equiv ==> equiv)) (@vcons A). Proof. by constructor. Qed. Global Instance vlookup_ne n m : Proper (dist n ==> eq ==> dist n) (@Vector.nth A m). Proof. intros v. induction v as [|x m v IH]; intros v'; inv_vec v'. - intros _ x. inv_fin x. - intros x' v' EQ i ? <-. inversion_clear EQ. inv_fin i=> // i. by apply IH. Qed. Global Instance vlookup_proper m : Proper (equiv ==> eq ==> equiv) (@Vector.nth A m). Proof. intros v v' ? x x' ->. apply equiv_dist=> n. f_equiv. by apply equiv_dist. Qed. Global Instance vec_to_list_ne m : NonExpansive (@vec_to_list A m). Proof. by intros v v'. Qed. Global Instance vec_to_list_proper m : Proper ((≡) ==> (≡)) (@vec_to_list A m). Proof. by intros v v'. Qed. End proper. (** Functor *) Definition vec_map {A B : ofeT} m (f : A → B) : vecC A m → vecC B m := @vmap A B f m. Lemma vec_map_ext_ne {A B : ofeT} m (f g : A → B) (v : vec A m) n : (∀ x, f x ≡{n}≡ g x) → vec_map m f v ≡{n}≡ vec_map m g v. Proof. intros Hf. eapply (list_fmap_ext_ne f g v) in Hf. by rewrite -!vec_to_list_map in Hf. Qed. Instance vec_map_ne {A B : ofeT} m f n : Proper (dist n ==> dist n) f → Proper (dist n ==> dist n) (@vec_map A B m f). Proof. intros ? v v' H. eapply list_fmap_ne in H; last done. by rewrite -!vec_to_list_map in H. Qed. Definition vecC_map {A B : ofeT} m (f : A -n> B) : vecC A m -n> vecC B m := CofeMor (vec_map m f). Instance vecC_map_ne {A A'} m : NonExpansive (@vecC_map A A' m). Proof. intros n f g ? v. by apply vec_map_ext_ne. Qed. Program Definition vecCF (F : cFunctor) m : cFunctor := {| cFunctor_car A _ B _ := vecC (cFunctor_car F A B) m; cFunctor_map A1 _ A2 _ B1 _ B2 _ fg := vecC_map m (cFunctor_map F fg) |}. Next Obligation. intros F A1 ? A2 ? B1 ? B2 ? n m f g Hfg. by apply vecC_map_ne, cFunctor_ne. Qed. Next Obligation. intros F m A ? B ? l. change (vec_to_list (vec_map m (cFunctor_map F (cid, cid)) l) ≡ l). rewrite vec_to_list_map. apply listCF. Qed. Next Obligation. intros F m A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' l. change (vec_to_list (vec_map m (cFunctor_map F (f ◎ g, g' ◎ f')) l) ≡ vec_map m (cFunctor_map F (g, g')) (vec_map m (cFunctor_map F (f, f')) l)). rewrite !vec_to_list_map. by apply: (cFunctor_compose (listCF F) f g f' g'). Qed. Instance vecCF_contractive F m : cFunctorContractive F → cFunctorContractive (vecCF F m). Proof. by intros ?? A1 ? A2 ? B1 ? B2 ? n ???; apply vecC_map_ne; first apply cFunctor_contractive. Qed.