From iris.algebra Require Export ofe. Set Default Proof Using "Type". Record solution (F : cFunctor) := Solution { solution_car :> ofeT; solution_cofe : Cofe solution_car; solution_unfold : solution_car -n> F solution_car _; solution_fold : F solution_car _ -n> solution_car; solution_fold_unfold X : solution_fold (solution_unfold X) ≡ X; solution_unfold_fold X : solution_unfold (solution_fold X) ≡ X }. Arguments solution_unfold {_} _. Arguments solution_fold {_} _. Existing Instance solution_cofe. Module solver. Section solver. Context (F : cFunctor) `{Fcontr : cFunctorContractive F}. Context `{Fcofe : ∀ (T : ofeT) `{!Cofe T}, Cofe (F T _)}. Context `{Finh : Inhabited (F unitC _)}. Notation map := (cFunctor_map F). Fixpoint A' (k : nat) : { C : ofeT & Cofe C } := match k with | 0 => existT (P:=Cofe) unitC _ | S k => existT (P:=Cofe) (F (projT1 (A' k)) (projT2 (A' k))) _ end. Notation A k := (projT1 (A' k)). Local Instance A_cofe k : Cofe (A k) := projT2 (A' k). Fixpoint f (k : nat) : A k -n> A (S k) := match k with 0 => CofeMor (λ _, inhabitant) | S k => map (g k,f k) end with g (k : nat) : A (S k) -n> A k := match k with 0 => CofeMor (λ _, ()) | S k => map (f k,g k) end. Definition f_S k (x : A (S k)) : f (S k) x = map (g k,f k) x := eq_refl. Definition g_S k (x : A (S (S k))) : g (S k) x = map (f k,g k) x := eq_refl. Arguments f : simpl never. Arguments g : simpl never. Lemma gf {k} (x : A k) : g k (f k x) ≡ x. Proof using Fcontr. induction k as [|k IH]; simpl in *; [by destruct x|]. rewrite -cFunctor_compose -{2}[x]cFunctor_id. by apply (contractive_proper map). Qed. Lemma fg {k} (x : A (S (S k))) : f (S k) (g (S k) x) ≡{k}≡ x. Proof using Fcontr. induction k as [|k IH]; simpl. - rewrite f_S g_S -{2}[x]cFunctor_id -cFunctor_compose. apply (contractive_0 map). - rewrite f_S g_S -{2}[x]cFunctor_id -cFunctor_compose. by apply (contractive_S map). Qed. Record tower := { tower_car k :> A k; g_tower k : g k (tower_car (S k)) ≡ tower_car k }. Instance tower_equiv : Equiv tower := λ X Y, ∀ k, X k ≡ Y k. Instance tower_dist : Dist tower := λ n X Y, ∀ k, X k ≡{n}≡ Y k. Definition tower_ofe_mixin : OfeMixin tower. Proof. split. - intros X Y; split; [by intros HXY n k; apply equiv_dist|]. intros HXY k; apply equiv_dist; intros n; apply HXY. - intros k; split. + by intros X n. + by intros X Y ? n. + by intros X Y Z ?? n; trans (Y n). - intros k X Y HXY n; apply dist_S. by rewrite -(g_tower X) (HXY (S n)) g_tower. Qed. Definition T : ofeT := OfeT tower tower_ofe_mixin. Program Definition tower_chain (c : chain T) (k : nat) : chain (A k) := {| chain_car i := c i k |}. Next Obligation. intros c k n i ?; apply (chain_cauchy c n); lia. Qed. Program Definition tower_compl : Compl T := λ c, {| tower_car n := compl (tower_chain c n) |}. Next Obligation. intros c k; apply equiv_dist=> n. by rewrite (conv_compl n (tower_chain c k)) (conv_compl n (tower_chain c (S k))) /= (g_tower (c _) k). Qed. Global Program Instance tower_cofe : Cofe T := { compl := tower_compl }. Next Obligation. intros n c k; rewrite /= (conv_compl n (tower_chain c k)). apply (chain_cauchy c); lia. Qed. Fixpoint ff {k} (i : nat) : A k -n> A (i + k) := match i with 0 => cid | S i => f (i + k) ◎ ff i end. Fixpoint gg {k} (i : nat) : A (i + k) -n> A k := match i with 0 => cid | S i => gg i ◎ g (i + k) end. Lemma ggff {k i} (x : A k) : gg i (ff i x) ≡ x. Proof using Fcontr. induction i as [|i IH]; simpl; [done|by rewrite (gf (ff i x)) IH]. Qed. Lemma f_tower k (X : tower) : f (S k) (X (S k)) ≡{k}≡ X (S (S k)). Proof using Fcontr. intros. by rewrite -(fg (X (S (S k)))) -(g_tower X). Qed. Lemma ff_tower k i (X : tower) : ff i (X (S k)) ≡{k}≡ X (i + S k). Proof using Fcontr. intros; induction i as [|i IH]; simpl; [done|]. by rewrite IH Nat.add_succ_r (dist_le _ _ _ _ (f_tower _ X)); last lia. Qed. Lemma gg_tower k i (X : tower) : gg i (X (i + k)) ≡ X k. Proof. by induction i as [|i IH]; simpl; [done|rewrite g_tower IH]. Qed. Instance tower_car_ne k : NonExpansive (λ X, tower_car X k). Proof. by intros X Y HX. Qed. Definition project (k : nat) : T -n> A k := CofeMor (λ X : T, tower_car X k). Definition coerce {i j} (H : i = j) : A i -n> A j := eq_rect _ (λ i', A i -n> A i') cid _ H. Lemma coerce_id {i} (H : i = i) (x : A i) : coerce H x = x. Proof. unfold coerce. by rewrite (proof_irrel H (eq_refl i)). Qed. Lemma coerce_proper {i j} (x y : A i) (H1 H2 : i = j) : x = y → coerce H1 x = coerce H2 y. Proof. by destruct H1; rewrite !coerce_id. Qed. Lemma g_coerce {k j} (H : S k = S j) (x : A (S k)) : g j (coerce H x) = coerce (Nat.succ_inj _ _ H) (g k x). Proof. by assert (k = j) by lia; subst; rewrite !coerce_id. Qed. Lemma coerce_f {k j} (H : S k = S j) (x : A k) : coerce H (f k x) = f j (coerce (Nat.succ_inj _ _ H) x). Proof. by assert (k = j) by lia; subst; rewrite !coerce_id. Qed. Lemma gg_gg {k i i1 i2 j} : ∀ (H1: k = i + j) (H2: k = i2 + (i1 + j)) (x: A k), gg i (coerce H1 x) = gg i1 (gg i2 (coerce H2 x)). Proof. intros ? -> x. assert (i = i2 + i1) as -> by lia. revert j x H1. induction i2 as [|i2 IH]; intros j X H1; simplify_eq/=; [by rewrite coerce_id|by rewrite g_coerce IH]. Qed. Lemma ff_ff {k i i1 i2 j} : ∀ (H1: i + k = j) (H2: i1 + (i2 + k) = j) (x: A k), coerce H1 (ff i x) = coerce H2 (ff i1 (ff i2 x)). Proof. intros ? <- x. assert (i = i1 + i2) as -> by lia. induction i1 as [|i1 IH]; simplify_eq/=; [by rewrite coerce_id|by rewrite coerce_f IH]. Qed. Definition embed_coerce {k} (i : nat) : A k -n> A i := match le_lt_dec i k with | left H => gg (k-i) ◎ coerce (eq_sym (Nat.sub_add _ _ H)) | right H => coerce (Nat.sub_add k i (Nat.lt_le_incl _ _ H)) ◎ ff (i-k) end. Lemma g_embed_coerce {k i} (x : A k) : g i (embed_coerce (S i) x) ≡ embed_coerce i x. Proof using Fcontr. unfold embed_coerce; destruct (le_lt_dec (S i) k), (le_lt_dec i k); simpl. - symmetry; by erewrite (@gg_gg _ _ 1 (k - S i)); simpl. - exfalso; lia. - assert (i = k) by lia; subst. rewrite (ff_ff _ (eq_refl (1 + (0 + k)))) /= gf. by rewrite (gg_gg _ (eq_refl (0 + (0 + k)))). - assert (H : 1 + ((i - k) + k) = S i) by lia. rewrite (ff_ff _ H) /= -{2}(gf (ff (i - k) x)) g_coerce. by erewrite coerce_proper by done. Qed. Program Definition embed (k : nat) (x : A k) : T := {| tower_car n := embed_coerce n x |}. Next Obligation. intros k x i. apply g_embed_coerce. Qed. Instance: Params (@embed) 1 := {}. Instance embed_ne k : NonExpansive (embed k). Proof. by intros n x y Hxy i; rewrite /= Hxy. Qed. Definition embed' (k : nat) : A k -n> T := CofeMor (embed k). Lemma embed_f k (x : A k) : embed (S k) (f k x) ≡ embed k x. Proof. rewrite equiv_dist=> n i; rewrite /embed /= /embed_coerce. destruct (le_lt_dec i (S k)), (le_lt_dec i k); simpl. - assert (H : S k = S (k - i) + (0 + i)) by lia; rewrite (gg_gg _ H) /=. by erewrite g_coerce, gf, coerce_proper by done. - assert (S k = 0 + (0 + i)) as H by lia. rewrite (gg_gg _ H); simplify_eq/=. by rewrite (ff_ff _ (eq_refl (1 + (0 + k)))). - exfalso; lia. - assert (H : (i - S k) + (1 + k) = i) by lia; rewrite (ff_ff _ H) /=. by erewrite coerce_proper by done. Qed. Lemma embed_tower k (X : T) : embed (S k) (X (S k)) ≡{k}≡ X. Proof. intros i; rewrite /= /embed_coerce. destruct (le_lt_dec i (S k)) as [H|H]; simpl. - rewrite -(gg_tower i (S k - i) X). apply (_ : Proper (_ ==> _) (gg _)); by destruct (eq_sym _). - rewrite (ff_tower k (i - S k) X). by destruct (Nat.sub_add _ _ _). Qed. Program Definition unfold_chain (X : T) : chain (F T _) := {| chain_car n := map (project n,embed' n) (X (S n)) |}. Next Obligation. intros X n i Hi. assert (∃ k, i = k + n) as [k ?] by (exists (i - n); lia); subst; clear Hi. induction k as [|k IH]; simpl; first done. rewrite -IH -(dist_le _ _ _ _ (f_tower (k + n) _)); last lia. rewrite f_S -cFunctor_compose. by apply (contractive_ne map); split=> Y /=; rewrite ?g_tower ?embed_f. Qed. Definition unfold (X : T) : F T _ := compl (unfold_chain X). Instance unfold_ne : NonExpansive unfold. Proof. intros n X Y HXY. by rewrite /unfold (conv_compl n (unfold_chain X)) (conv_compl n (unfold_chain Y)) /= (HXY (S n)). Qed. Program Definition fold (X : F T _) : T := {| tower_car n := g n (map (embed' n,project n) X) |}. Next Obligation. intros X k. apply (_ : Proper ((≡) ==> (≡)) (g k)). rewrite g_S -cFunctor_compose. apply (contractive_proper map); split=> Y; [apply embed_f|apply g_tower]. Qed. Instance fold_ne : NonExpansive fold. Proof. by intros n X Y HXY k; rewrite /fold /= HXY. Qed. Theorem result : solution F. Proof using Type*. apply (Solution F T _ (CofeMor unfold) (CofeMor fold)). - move=> X /=. rewrite equiv_dist=> n k; rewrite /unfold /fold /=. rewrite -g_tower -(gg_tower _ n); apply (_ : Proper (_ ==> _) (g _)). trans (map (ff n, gg n) (X (S (n + k)))). { rewrite /unfold (conv_compl n (unfold_chain X)). rewrite -(chain_cauchy (unfold_chain X) n (S (n + k))) /=; last lia. rewrite -(dist_le _ _ _ _ (f_tower (n + k) _)); last lia. rewrite f_S -!cFunctor_compose; apply (contractive_ne map); split=> Y. + rewrite /embed' /= /embed_coerce. destruct (le_lt_dec _ _); simpl; [exfalso; lia|]. by rewrite (ff_ff _ (eq_refl (S n + (0 + k)))) /= gf. + rewrite /embed' /= /embed_coerce. destruct (le_lt_dec _ _); simpl; [|exfalso; lia]. by rewrite (gg_gg _ (eq_refl (0 + (S n + k)))) /= gf. } assert (∀ i k (x : A (S i + k)) (H : S i + k = i + S k), map (ff i, gg i) x ≡ gg i (coerce H x)) as map_ff_gg. { intros i; induction i as [|i IH]; intros k' x H; simpl. { by rewrite coerce_id cFunctor_id. } rewrite cFunctor_compose g_coerce; apply IH. } assert (H: S n + k = n + S k) by lia. rewrite (map_ff_gg _ _ _ H). apply (_ : Proper (_ ==> _) (gg _)); by destruct H. - intros X; rewrite equiv_dist=> n /=. rewrite /unfold /= (conv_compl' n (unfold_chain (fold X))) /=. rewrite g_S -!cFunctor_compose -{2}[X]cFunctor_id. apply (contractive_ne map); split => Y /=. + rewrite f_tower. apply dist_S. by rewrite embed_tower. + etrans; [apply embed_ne, equiv_dist, g_tower|apply embed_tower]. Qed. End solver. End solver.