From iris.heap_lang Require Export spawn. From iris.heap_lang Require Import proofmode notation. Import uPred. Definition parN : namespace := nroot .@ "par". Definition par : val := λ: "fs", let: "handle" := spawn (Fst "fs") in let: "v2" := Snd "fs" #() in let: "v1" := join "handle" in ("v1", "v2"). Notation "e1 || e2" := (par (Pair (λ: <>, e1) (λ: <>, e2)))%E : expr_scope. Global Opaque par. Section proof. Context `{!heapG Σ, !spawnG Σ}. Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) e (f1 f2 : val) (Φ : val → iProp Σ) : to_val e = Some (f1,f2)%V → (heap_ctx ★ WP f1 #() {{ Ψ1 }} ★ WP f2 #() {{ Ψ2 }} ★ ▷ ∀ v1 v2, Ψ1 v1 ★ Ψ2 v2 -★ ▷ Φ (v1,v2)%V) ⊢ WP par e {{ Φ }}. Proof. iIntros (?) "(#Hh&Hf1&Hf2&HΦ)". rewrite /par. wp_value. iModIntro. wp_let. wp_proj. wp_apply (spawn_spec parN); try wp_done; try solve_ndisj; iFrame "Hf1 Hh". iNext. iIntros (l) "Hl". wp_let. wp_proj. wp_bind (f2 _). iApply wp_wand_l; iFrame "Hf2"; iIntros (v) "H2". wp_let. wp_apply join_spec; iFrame "Hl". iNext. iIntros (w) "H1". iSpecialize ("HΦ" with "* [-]"); first by iSplitL "H1". by wp_let. Qed. Lemma wp_par (Ψ1 Ψ2 : val → iProp Σ) (e1 e2 : expr) `{!Closed [] e1, Closed [] e2} (Φ : val → iProp Σ) : (heap_ctx ★ WP e1 {{ Ψ1 }} ★ WP e2 {{ Ψ2 }} ★ ∀ v1 v2, Ψ1 v1 ★ Ψ2 v2 -★ ▷ Φ (v1,v2)%V) ⊢ WP e1 || e2 {{ Φ }}. Proof. iIntros "(#Hh&H1&H2&H)". iApply (par_spec Ψ1 Ψ2); try wp_done. iFrame "Hh H". iSplitL "H1"; by wp_let. Qed. End proof.