From iris.algebra Require Export cmra. Set Default Proof Using "Type". (** * Local updates *) Definition local_update {A : cmraT} (x y : A * A) := ∀ n mz, ✓{n} x.1 → x.1 ≡{n}≡ x.2 ⋅? mz → ✓{n} y.1 ∧ y.1 ≡{n}≡ y.2 ⋅? mz. Instance: Params (@local_update) 1 := {}. Infix "~l~>" := local_update (at level 70). Section updates. Context {A : cmraT}. Implicit Types x y : A. Global Instance local_update_proper : Proper ((≡) ==> (≡) ==> iff) (@local_update A). Proof. unfold local_update. by repeat intro; setoid_subst. Qed. Global Instance local_update_preorder : PreOrder (@local_update A). Proof. split; unfold local_update; red; naive_solver. Qed. Lemma exclusive_local_update `{!Exclusive y} x x' : ✓ x' → (x,y) ~l~> (x',x'). Proof. intros ? n mz Hxv Hx; simpl in *. move: Hxv; rewrite Hx; move=> /exclusiveN_opM=> ->; split; auto. by apply cmra_valid_validN. Qed. Lemma op_local_update x y z : (∀ n, ✓{n} x → ✓{n} (z ⋅ x)) → (x,y) ~l~> (z ⋅ x, z ⋅ y). Proof. intros Hv n mz Hxv Hx; simpl in *; split; [by auto|]. by rewrite Hx -cmra_op_opM_assoc. Qed. Lemma op_local_update_discrete `{!CmraDiscrete A} x y z : (✓ x → ✓ (z ⋅ x)) → (x,y) ~l~> (z ⋅ x, z ⋅ y). Proof. intros; apply op_local_update=> n. by rewrite -!(cmra_discrete_valid_iff n). Qed. Lemma op_local_update_frame x y x' y' yf : (x,y) ~l~> (x',y') → (x,y ⋅ yf) ~l~> (x', y' ⋅ yf). Proof. intros Hup n mz Hxv Hx; simpl in *. destruct (Hup n (Some (yf ⋅? mz))); [done|by rewrite /= -cmra_op_opM_assoc|]. by rewrite cmra_op_opM_assoc. Qed. Lemma cancel_local_update x y z `{!Cancelable x} : (x ⋅ y, x ⋅ z) ~l~> (y, z). Proof. intros n f ? Heq. split; first by eapply cmra_validN_op_r. apply (cancelableN x); first done. by rewrite -cmra_op_opM_assoc. Qed. Lemma replace_local_update x y `{!IdFree x} : ✓ y → (x, x) ~l~> (y, y). Proof. intros ? n mz ? Heq; simpl in *; split; first by apply cmra_valid_validN. destruct mz as [z|]; [|done]. by destruct (id_freeN_r n n x z). Qed. Lemma local_update_discrete `{!CmraDiscrete A} (x y x' y' : A) : (x,y) ~l~> (x',y') ↔ ∀ mz, ✓ x → x ≡ y ⋅? mz → ✓ x' ∧ x' ≡ y' ⋅? mz. Proof. rewrite /local_update /=. setoid_rewrite <-cmra_discrete_valid_iff. setoid_rewrite <-(λ n, discrete_iff n x). setoid_rewrite <-(λ n, discrete_iff n x'). naive_solver eauto using 0. Qed. Lemma local_update_valid0 x y x' y' : (✓{0} x → ✓{0} y → x ≡{0}≡ y ∨ y ≼{0} x → (x,y) ~l~> (x',y')) → (x,y) ~l~> (x',y'). Proof. intros Hup n mz Hmz Hz; simpl in *. apply Hup; auto. - by apply (cmra_validN_le n); last lia. - apply (cmra_validN_le n); last lia. move: Hmz; rewrite Hz. destruct mz; simpl; eauto using cmra_validN_op_l. - destruct mz as [z|]. + right. exists z. apply dist_le with n; auto with lia. + left. apply dist_le with n; auto with lia. Qed. Lemma local_update_valid `{!CmraDiscrete A} x y x' y' : (✓ x → ✓ y → x ≡ y ∨ y ≼ x → (x,y) ~l~> (x',y')) → (x,y) ~l~> (x',y'). Proof. rewrite !(cmra_discrete_valid_iff 0) (cmra_discrete_included_iff 0) (discrete_iff 0). apply local_update_valid0. Qed. Lemma local_update_total_valid0 `{!CmraTotal A} x y x' y' : (✓{0} x → ✓{0} y → y ≼{0} x → (x,y) ~l~> (x',y')) → (x,y) ~l~> (x',y'). Proof. intros Hup. apply local_update_valid0=> ?? [Hx|?]; apply Hup; auto. by rewrite Hx. Qed. Lemma local_update_total_valid `{!CmraTotal A, !CmraDiscrete A} x y x' y' : (✓ x → ✓ y → y ≼ x → (x,y) ~l~> (x',y')) → (x,y) ~l~> (x',y'). Proof. rewrite !(cmra_discrete_valid_iff 0) (cmra_discrete_included_iff 0). apply local_update_total_valid0. Qed. End updates. Section updates_unital. Context {A : ucmraT}. Implicit Types x y : A. Lemma local_update_unital x y x' y' : (x,y) ~l~> (x',y') ↔ ∀ n z, ✓{n} x → x ≡{n}≡ y ⋅ z → ✓{n} x' ∧ x' ≡{n}≡ y' ⋅ z. Proof. split. - intros Hup n z. apply (Hup _ (Some z)). - intros Hup n [z|]; simpl; [by auto|]. rewrite -(right_id ε op y) -(right_id ε op y'). auto. Qed. Lemma local_update_unital_discrete `{!CmraDiscrete A} (x y x' y' : A) : (x,y) ~l~> (x',y') ↔ ∀ z, ✓ x → x ≡ y ⋅ z → ✓ x' ∧ x' ≡ y' ⋅ z. Proof. rewrite local_update_discrete. split. - intros Hup z. apply (Hup (Some z)). - intros Hup [z|]; simpl; [by auto|]. rewrite -(right_id ε op y) -(right_id ε op y'). auto. Qed. Lemma cancel_local_update_unit x y `{!Cancelable x} : (x ⋅ y, x) ~l~> (y, ε). Proof. rewrite -{2}(right_id ε op x). by apply cancel_local_update. Qed. End updates_unital. (** * Product *) Lemma prod_local_update {A B : cmraT} (x y x' y' : A * B) : (x.1,y.1) ~l~> (x'.1,y'.1) → (x.2,y.2) ~l~> (x'.2,y'.2) → (x,y) ~l~> (x',y'). Proof. intros Hup1 Hup2 n mz [??] [??]; simpl in *. destruct (Hup1 n (fst <$> mz)); [done|by destruct mz|]. destruct (Hup2 n (snd <$> mz)); [done|by destruct mz|]. by destruct mz. Qed. Lemma prod_local_update' {A B : cmraT} (x1 y1 x1' y1' : A) (x2 y2 x2' y2' : B) : (x1,y1) ~l~> (x1',y1') → (x2,y2) ~l~> (x2',y2') → ((x1,x2),(y1,y2)) ~l~> ((x1',x2'),(y1',y2')). Proof. intros. by apply prod_local_update. Qed. Lemma prod_local_update_1 {A B : cmraT} (x1 y1 x1' y1' : A) (x2 y2 : B) : (x1,y1) ~l~> (x1',y1') → ((x1,x2),(y1,y2)) ~l~> ((x1',x2),(y1',y2)). Proof. intros. by apply prod_local_update. Qed. Lemma prod_local_update_2 {A B : cmraT} (x1 y1 : A) (x2 y2 x2' y2' : B) : (x2,y2) ~l~> (x2',y2') → ((x1,x2),(y1,y2)) ~l~> ((x1,x2'),(y1,y2')). Proof. intros. by apply prod_local_update. Qed. (** * Option *) (* TODO: Investigate whether we can use these in proving the very similar local updates on finmaps. *) Lemma option_local_update {A : cmraT} (x y x' y' : A) : (x, y) ~l~> (x',y') → (Some x, Some y) ~l~> (Some x', Some y'). Proof. intros Hup. apply local_update_unital=>n mz Hxv Hx; simpl in *. destruct (Hup n mz); first done. { destruct mz as [?|]; inversion_clear Hx; auto. } split; first done. destruct mz as [?|]; constructor; auto. Qed. Lemma alloc_option_local_update {A : cmraT} (x : A) y : ✓ x → (None, y) ~l~> (Some x, Some x). Proof. move=>Hx. apply local_update_unital=> n z _ /= Heq. split. { rewrite Some_validN. apply cmra_valid_validN. done. } destruct z as [z|]; last done. destruct y; inversion Heq. Qed. Lemma delete_option_local_update {A : cmraT} (x : option A) (y : A) : Exclusive y → (x, Some y) ~l~> (None, None). Proof. move=>Hex. apply local_update_unital=>n z /= Hy Heq. split; first done. destruct z as [z|]; last done. exfalso. move: Hy. rewrite Heq /= -Some_op=>Hy. eapply Hex. eapply cmra_validN_le. eapply Hy. lia. Qed. (** * Natural numbers *) Lemma nat_local_update (x y x' y' : nat) : x + y' = x' + y → (x,y) ~l~> (x',y'). Proof. intros ??; apply local_update_unital_discrete=> z _. compute -[minus plus]; lia. Qed. Lemma mnat_local_update (x y x' : mnatUR) : x ≤ x' → (x,y) ~l~> (x',x'). Proof. intros ??; apply local_update_unital_discrete=> z _. compute -[max]; lia. Qed.