 09 Jan, 2017 1 commit


Ralf Jung authored

 06 Jan, 2017 1 commit


Ralf Jung authored

 05 Jan, 2017 1 commit


Ralf Jung authored

 03 Jan, 2017 1 commit


Ralf Jung authored
This patch was created using find name *.v  xargs L 1 awk i inplace '{from = 0} /^From/{ from = 1; ever_from = 1} { if (from == 0 && seen == 0 && ever_from == 1) { print "Set Default Proof Using \"Type*\"."; seen = 1 } }1 ' and some minor manual editing

 23 Dec, 2016 1 commit


JacquesHenri Jourdan authored

 09 Dec, 2016 1 commit


Ralf Jung authored

 05 Dec, 2016 1 commit


Robbert Krebbers authored
Using this new definition we can express being contractive using a Proper. This has the following advantages:  It makes it easier to state that a function with multiple arguments is contractive (in all or some arguments).  A solve_contractive tactic can be implemented by extending the solve_proper tactic.

 02 Dec, 2016 1 commit


Robbert Krebbers authored

 28 Nov, 2016 1 commit


Robbert Krebbers authored

 27 Nov, 2016 1 commit


Robbert Krebbers authored

 25 Nov, 2016 5 commits


Robbert Krebbers authored

JacquesHenri Jourdan authored

Robbert Krebbers authored

Robbert Krebbers authored
No longer `put box_own_prop γ P` in the invariant, it is persistent.

JacquesHenri Jourdan authored

 24 Nov, 2016 4 commits


JacquesHenri Jourdan authored

JacquesHenri Jourdan authored

JacquesHenri Jourdan authored

JacquesHenri Jourdan authored
The idea on magic wand is to use it for curried lemmas and use ⊢ for uncurried lemmas.

 22 Nov, 2016 2 commits


Robbert Krebbers authored
We do this by introducing a type class UpClose with notation ↑. The reason for this change is as follows: since `nclose : namespace → coPset` is declared as a coercion, the notation `nclose N ⊆ E` was pretty printed as `N ⊆ E`. However, `N ⊆ E` could not be typechecked because type checking goes from left to right, and as such would look for an instance `SubsetEq namespace`, which causes the right hand side to be illtyped.

Ralf Jung authored

 20 Nov, 2016 2 commits


Robbert Krebbers authored

Robbert Krebbers authored

 17 Nov, 2016 1 commit


Robbert Krebbers authored

 16 Nov, 2016 1 commit


Robbert Krebbers authored
We need instances like EqDecision and Countable for it. We could redeclare those instead, though.

 03 Nov, 2016 1 commit


Robbert Krebbers authored
The old choice for ★ was a arbitrary: the precedence of the ASCII asterisk * was fixed at a wrong level in Coq, so we had to pick another symbol. The ★ was a random choice from a unicode chart. The new symbol ∗ (as proposed by David Swasey) corresponds better to conventional practise and matches the symbol we use on paper.

 28 Oct, 2016 2 commits


Robbert Krebbers authored

Robbert Krebbers authored

 25 Oct, 2016 5 commits


Robbert Krebbers authored

Robbert Krebbers authored
There are now two proof mode tactics for dealing with modalities:  `iModIntro` : introduction of a modality  `iMod pm_trm as (x1 ... xn) "ipat"` : eliminate a modality The behavior of these tactics can be controlled by instances of the `IntroModal` and `ElimModal` type class. We have declared instances for later, except 0, basic updates and fancy updates. The tactic `iMod` is flexible enough that it can also eliminate an updates around a weakest pre, and so forth. The corresponding introduction patterns of these tactics are `!>` and `>`. These tactics replace the tactics `iUpdIntro`, `iUpd` and `iTimeless`. Source of backwards incompatability: the introduction pattern `!>` is used for introduction of arbitrary modalities. It used to introduce laters by stripping of a later of each hypotheses.

Robbert Krebbers authored

Robbert Krebbers authored

Robbert Krebbers authored
And also rename the corresponding proof mode tactics.

 06 Oct, 2016 1 commit


Robbert Krebbers authored

 05 Oct, 2016 1 commit


Robbert Krebbers authored

 20 Sep, 2016 1 commit


Robbert Krebbers authored

 09 Sep, 2016 1 commit


Robbert Krebbers authored
Before this commit, given "HP" : P and "H" : P ★ Q with Q persistent, one could write: iSpecialize ("H" with "#HP") to eliminate the wand in "H" while keeping the resource "HP". The lemma: own_valid : own γ x ⊢ ✓ x was the prototypical example where this pattern (using the #) was used. However, the pattern was too limited. For example, given "H" : P₁ ★ P₂ ★ Q", one could not write iSpecialize ("H" with "#HP₁") because P₂ ★ Q is not persistent, even when Q is. So, instead, this commit introduces the following tactic: iSpecialize pm_trm as # which allows one to eliminate implications and wands while being able to use all hypotheses to prove the premises, as well as being able to use all hypotheses to prove the resulting goal. In the case of iDestruct, we now check whether all branches of the introduction pattern start with an `#` (moving the hypothesis to the persistent context) or `%` (moving the hypothesis to the pure Coq context). If this is the case, we allow one to use all hypotheses for proving the premises, as well as for proving the resulting goal.

 05 Aug, 2016 3 commits


Robbert Krebbers authored

Robbert Krebbers authored
Also make those for introduction and elimination more symmetric: !% pure introduction % pure elimination !# always introduction # always elimination !> later introduction > pat timeless later elimination !==> view shift introduction ==> pat view shift elimination

Robbert Krebbers authored
This commit features:  A simpler model. The recursive domain equation no longer involves a triple containing invariants, physical state and ghost state, but just ghost state. Invariants and physical state are encoded using (higherorder) ghost state.  (Primitive) view shifts are formalized in the logic and all properties about it are proven in the logic instead of the model. Instead, the core logic features only a notion of raw view shifts which internalizing performing frame preserving updates.  A better behaved notion of mask changing view shifts. In particular, we no longer have sideconditions on transitivity of view shifts, and we have a rule for introduction of mask changing view shifts ={E1,E2}=> P with E2 ⊆ E1 which allows to postpone performing a view shift.  The weakest precondition connective is formalized in the logic using Banach's fixpoint. All properties about the connective are proven in the logic instead of directly in the model.  Adequacy is proven in the logic and uses a primitive form of adequacy for uPred that only involves raw views shifts and laters. Some remarks:  I have removed binary view shifts. I did not see a way to describe all rules of the new mask changing view shifts using those.  There is no longer the need for the notion of "frame shifting assertions" and these are thus removed. The rules for Hoare triples are thus also stated in terms of primitive view shifts. TODO:  Maybe rename primitive view shift into something more sensible  Figure out a way to deal with closed proofs (see the commented out stuff in tests/heap_lang and tests/barrier_client).
