Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Rodolphe Lepigre
Iris
Commits
e9f14405
Commit
e9f14405
authored
Nov 29, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add some type annotations to potentially ambiguous cases.
parent
0f11453a
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
3 additions
and
2 deletions
+3
-2
theories/algebra/auth.v
theories/algebra/auth.v
+1
-1
theories/algebra/functions.v
theories/algebra/functions.v
+1
-1
theories/algebra/gmap.v
theories/algebra/gmap.v
+1
-0
No files found.
theories/algebra/auth.v
View file @
e9f14405
...
...
@@ -208,7 +208,7 @@ Lemma auth_frag_mono a b : a ≼ b → ◯ a ≼ ◯ b.
Proof
.
intros
[
c
->].
rewrite
auth_frag_op
.
apply
cmra_included_l
.
Qed
.
Global
Instance
auth_frag_sep_homomorphism
:
MonoidHomomorphism
op
op
(
≡
)
(
Auth
None
).
MonoidHomomorphism
op
op
(
≡
)
(
@
Auth
A
None
).
Proof
.
by
split
;
[
split
;
try
apply
_
|].
Qed
.
Lemma
auth_both_op
a
b
:
Auth
(
Excl'
a
)
b
≡
●
a
⋅
◯
b
.
...
...
theories/algebra/functions.v
View file @
e9f14405
...
...
@@ -25,7 +25,7 @@ Section ofe.
by
destruct
(
decide
_
)
as
[[]|].
Qed
.
Global
Instance
ofe_fun_insert_proper
x
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
ofe_fun_insert
x
)
:
=
ne_proper_2
_
.
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
ofe_fun_insert
(
B
:
=
B
)
x
)
:
=
ne_proper_2
_
.
Lemma
ofe_fun_lookup_insert
f
x
y
:
(
ofe_fun_insert
x
y
f
)
x
=
y
.
Proof
.
...
...
theories/algebra/gmap.v
View file @
e9f14405
...
...
@@ -7,6 +7,7 @@ Set Default Proof Using "Type".
Section
cofe
.
Context
`
{
Countable
K
}
{
A
:
ofeT
}.
Implicit
Types
m
:
gmap
K
A
.
Implicit
Types
i
:
K
.
Instance
gmap_dist
:
Dist
(
gmap
K
A
)
:
=
λ
n
m1
m2
,
∀
i
,
m1
!!
i
≡
{
n
}
≡
m2
!!
i
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment