Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Rodolphe Lepigre
Iris
Commits
e5e9bcf3
Commit
e5e9bcf3
authored
Feb 29, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
prove "THE CLIENT"
parent
1cf19e9c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
54 additions
and
6 deletions
+54
-6
barrier/client.v
barrier/client.v
+54
-6
No files found.
barrier/client.v
View file @
e5e9bcf3
...
...
@@ -2,21 +2,69 @@ From barrier Require Import proof.
From
program_logic
Require
Import
auth
sts
saved_prop
hoare
ownership
.
Import
uPred
.
Definition
client
:
=
(
let
:
"b"
:
=
newbarrier
'
()
in
wait
"b"
)%
L
.
Definition
worker
(
n
:
Z
)
:
=
(
λ
:
"b"
"y"
,
wait
"b"
;;
(!
"y"
)
'
n
)%
L
.
Definition
client
:
=
(
let
:
"y"
:
=
ref
'
0
in
let
:
"b"
:
=
newbarrier
'
()
in
Fork
(
Skip
;;
Fork
(
worker
12
"b"
"y"
)
;;
worker
17
"b"
"y"
)
;;
"y"
<-
(
λ
:
"z"
,
"z"
+
'
42
)
;;
signal
"b"
)%
L
.
Section
client
.
Context
{
Σ
:
iFunctorG
}
`
{!
heapG
Σ
,
!
barrierG
Σ
}
(
heapN
N
:
namespace
).
Local
Notation
iProp
:
=
(
iPropG
heap_lang
Σ
).
Definition
y_inv
q
y
:
iProp
:
=
(
∃
f
:
val
,
y
↦
{
q
}
f
★
□
∀
n
:
Z
,
(* TODO: '() conflicts with '(n + 42)... *)
||
f
'
n
{{
λ
v
,
v
=
LitV
(
n
+
42
)%
Z
}})%
I
.
Lemma
y_inv_split
q
y
:
y_inv
q
y
⊑
(
y_inv
(
q
/
2
)
y
★
y_inv
(
q
/
2
)
y
).
Proof
.
rewrite
/
y_inv
.
apply
exist_elim
=>
f
.
rewrite
-!(
exist_intro
f
).
rewrite
heap_mapsto_op_split
.
ecancel
[
y
↦
{
_
}
_;
y
↦
{
_
}
_
]%
I
.
by
rewrite
[
X
in
X
⊑
_
]
always_sep_dup
.
Qed
.
Lemma
worker_safe
q
(
n
:
Z
)
(
b
y
:
loc
)
:
(
heap_ctx
heapN
★
recv
heapN
N
b
(
y_inv
q
y
))
⊑
||
worker
n
(
Loc
b
)
(
Loc
y
)
{{
λ
_
,
True
}}.
Proof
.
rewrite
/
worker
.
wp_lam
.
wp_let
.
ewp
apply
wait_spec
.
rewrite
comm
.
apply
sep_mono_r
.
apply
wand_intro_l
.
rewrite
sep_exist_r
.
apply
exist_elim
=>
f
.
wp_seq
.
(* TODO these aprenthesis are rather surprising. *)
(
ewp
apply
:
(
wp_load
heapN
_
_
q
f
))
;
eauto
with
I
.
strip_later
.
(* hu, shouldn't it do that? *)
rewrite
-
assoc
.
apply
sep_mono_r
.
apply
wand_intro_l
.
rewrite
always_elim
(
forall_elim
n
)
sep_elim_r
sep_elim_l
.
apply
wp_mono
=>?.
eauto
with
I
.
Qed
.
Lemma
client_safe
:
heapN
⊥
N
→
heap_ctx
heapN
⊑
||
client
{{
λ
_
,
True
}}.
Proof
.
intros
?.
rewrite
/
client
.
ewp
eapply
(
newbarrier_spec
heapN
N
True
%
I
)
;
last
done
.
apply
sep_intro_True_r
;
first
done
.
apply
forall_intro
=>
l
.
apply
wand_intro_l
.
rewrite
right_id
.
wp_let
.
etrans
;
last
eapply
wait_spec
.
apply
sep_mono_r
,
wand_intro_r
.
eauto
.
(
ewp
eapply
wp_alloc
)
;
eauto
with
I
.
strip_later
.
apply
forall_intro
=>
y
.
apply
wand_intro_l
.
wp_let
.
ewp
eapply
(
newbarrier_spec
heapN
N
(
y_inv
1
y
))
;
last
done
.
rewrite
comm
.
rewrite
{
1
}[
heap_ctx
_
]
always_sep_dup
-!
assoc
.
apply
sep_mono_r
.
apply
forall_intro
=>
b
.
apply
wand_intro_l
.
wp_let
.
ewp
eapply
wp_fork
.
rewrite
[
heap_ctx
_
]
always_sep_dup
!
assoc
[(
_
★
heap_ctx
_
)%
I
]
comm
.
rewrite
[(||
_
{{
_
}}
★
_
)%
I
]
comm
-!
assoc
assoc
.
apply
sep_mono
;
last
first
.
{
(* The original thread, the sender. *)
wp_seq
.
(
ewp
eapply
wp_store
)
;
eauto
with
I
.
strip_later
.
rewrite
assoc
[(
_
★
y
↦
_
)%
I
]
comm
.
apply
sep_mono_r
,
wand_intro_l
.
wp_seq
.
rewrite
-
signal_spec
right_id
assoc
sep_elim_l
comm
.
apply
sep_mono_r
.
rewrite
/
y_inv
-(
exist_intro
(
λ
:
"z"
,
"z"
+
'
42
)%
L
).
apply
sep_intro_True_r
;
first
done
.
apply
:
always_intro
.
apply
forall_intro
=>
n
.
wp_let
.
wp_op
.
by
apply
const_intro
.
}
(* The two spawned threads, the waiters. *)
ewp
eapply
recv_split
.
rewrite
comm
.
apply
sep_mono
.
{
apply
recv_mono
.
rewrite
y_inv_split
.
done
.
}
apply
wand_intro_r
.
wp_seq
.
ewp
eapply
wp_fork
.
rewrite
[
heap_ctx
_
]
always_sep_dup
!
assoc
[(
_
★
recv
_
_
_
_
)%
I
]
comm
.
rewrite
-!
assoc
assoc
.
apply
sep_mono
.
-
wp_seq
.
by
rewrite
-
worker_safe
comm
.
-
by
rewrite
-
worker_safe
.
Qed
.
End
client
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment