Commit e2e8748f authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan

eta-expand bi_mor_exist and bi_mor_forall.

parent 1f9e71cf
......@@ -2306,12 +2306,12 @@ Section bi_morphims.
Global Instance bi_mor_mono_flip : Proper (flip () ==> flip ()) mor.
Proof. solve_proper. Qed.
Lemma bi_mor_forall A Φ : mor (@bi_forall _ A Φ) ( x, mor (Φ x)).
Lemma bi_mor_forall A (Φ : A PROP1) : mor ( x, Φ x) ( x, mor (Φ x)).
Proof.
apply bi.equiv_spec; split; [|apply bi_mor_forall_2].
apply bi.forall_intro=>?. by rewrite bi.forall_elim.
Qed.
Lemma bi_mor_exist A Φ : mor (@bi_exist _ A Φ) ( x, mor (Φ x)).
Lemma bi_mor_exist A (Φ : A PROP1) : mor ( x, Φ x) ( x, mor (Φ x)).
Proof.
apply bi.equiv_spec; split; [apply bi_mor_exist_1|].
apply bi.exist_elim=>?. by rewrite -bi.exist_intro.
......
......@@ -342,8 +342,8 @@ Class BiMorphism {PROP1 PROP2 : bi} (f : PROP1 → PROP2) := {
bi_mor_mono :> Proper (() ==> ()) f;
bi_mor_emp : f emp emp;
bi_mor_impl_2 P Q : (f P f Q)%I f (P Q)%I;
bi_mor_forall_2 A Φ : ( x, f (Φ x)) f (@bi_forall _ A Φ);
bi_mor_exist_1 A Φ : f (@bi_exist _ A Φ) x, f (Φ x);
bi_mor_forall_2 A (Φ : A PROP1) : ( x, f (Φ x)) f ( x, Φ x);
bi_mor_exist_1 A (Φ : A PROP1) : f ( x, Φ x) x, f (Φ x);
bi_mor_internal_eq_1 (A : ofeT) (x y : A) : f (x y) (x y);
bi_mor_sep P Q : f (P Q) (f P f Q);
bi_mor_wand_2 P Q : (f P - f Q) f (P - Q);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment