Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
e06423f4
Commit
e06423f4
authored
Aug 31, 2016
by
Robbert Krebbers
Browse files
Prove more later properties in the logic.
parent
bd15a981
Changes
1
Hide whitespace changes
Inline
Side-by-side
algebra/upred.v
View file @
e06423f4
...
...
@@ -731,12 +731,6 @@ Lemma pure_elim_r φ Q R : (φ → Q ⊢ R) → Q ∧ ■ φ ⊢ R.
Proof
.
intros
;
apply
pure_elim
with
φ
;
eauto
.
Qed
.
Lemma
pure_equiv
(
φ
:
Prop
)
:
φ
→
■
φ
⊣
⊢
True
.
Proof
.
intros
;
apply
(
anti_symm
_
)
;
auto
using
pure_intro
.
Qed
.
Lemma
pure_alt
φ
:
■
φ
⊣
⊢
∃
_
:
φ
,
True
.
Proof
.
apply
(
anti_symm
_
).
-
eapply
pure_elim
;
eauto
=>
H
.
rewrite
-(
exist_intro
H
)
;
auto
.
-
by
apply
exist_elim
,
pure_intro
.
Qed
.
Lemma
eq_refl'
{
A
:
cofeT
}
(
a
:
A
)
P
:
P
⊢
a
≡
a
.
Proof
.
rewrite
(
True_intro
P
).
apply
eq_refl
.
Qed
.
...
...
@@ -750,6 +744,23 @@ Proof.
apply
(
eq_rewrite
P
Q
(
λ
Q
,
P
↔
Q
))%
I
;
first
solve_proper
;
auto
using
iff_refl
.
Qed
.
Lemma
pure_alt
φ
:
■
φ
⊣
⊢
∃
_
:
φ
,
True
.
Proof
.
apply
(
anti_symm
_
).
-
eapply
pure_elim
;
eauto
=>
H
.
rewrite
-(
exist_intro
H
)
;
auto
.
-
by
apply
exist_elim
,
pure_intro
.
Qed
.
Lemma
and_alt
P
Q
:
P
∧
Q
⊣
⊢
∀
b
:
bool
,
if
b
then
P
else
Q
.
Proof
.
apply
(
anti_symm
_
)
;
first
apply
forall_intro
=>
-[]
;
auto
.
apply
and_intro
.
by
rewrite
(
forall_elim
true
).
by
rewrite
(
forall_elim
false
).
Qed
.
Lemma
or_alt
P
Q
:
P
∨
Q
⊣
⊢
∃
b
:
bool
,
if
b
then
P
else
Q
.
Proof
.
apply
(
anti_symm
_
)
;
last
apply
exist_elim
=>
-[]
;
auto
.
apply
or_elim
.
by
rewrite
-(
exist_intro
true
).
by
rewrite
-(
exist_intro
false
).
Qed
.
(* BI connectives *)
Lemma
sep_mono
P
P'
Q
Q'
:
(
P
⊢
Q
)
→
(
P'
⊢
Q'
)
→
P
★
P'
⊢
Q
★
Q'
.
Proof
.
...
...
@@ -1020,11 +1031,7 @@ Proof.
unseal
;
split
=>
n
x
?
HP
;
induction
n
as
[|
n
IH
]
;
[
by
apply
HP
|].
apply
HP
,
IH
,
uPred_closed
with
(
S
n
)
;
eauto
using
cmra_validN_S
.
Qed
.
Lemma
later_and
P
Q
:
▷
(
P
∧
Q
)
⊣
⊢
▷
P
∧
▷
Q
.
Proof
.
unseal
;
split
=>
-[|
n
]
x
;
by
split
.
Qed
.
Lemma
later_or
P
Q
:
▷
(
P
∨
Q
)
⊣
⊢
▷
P
∨
▷
Q
.
Proof
.
unseal
;
split
=>
-[|
n
]
x
;
simpl
;
tauto
.
Qed
.
Lemma
later_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∀
a
,
Φ
a
)
⊣
⊢
(
∀
a
,
▷
Φ
a
).
Lemma
later_forall_2
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
∀
a
,
▷
Φ
a
)
⊢
▷
∀
a
,
Φ
a
.
Proof
.
unseal
;
by
split
=>
-[|
n
]
x
.
Qed
.
Lemma
later_exist_false
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∃
a
,
Φ
a
)
⊢
▷
False
∨
(
∃
a
,
▷
Φ
a
).
...
...
@@ -1059,13 +1066,17 @@ Proof. intros P Q; apply later_mono. Qed.
Lemma
later_intro
P
:
P
⊢
▷
P
.
Proof
.
rewrite
-(
and_elim_l
(
▷
P
)
P
)
-(
l
ö
b
(
▷
P
∧
P
))
later_and
.
apply
impl_intro_l
;
auto
.
rewrite
-(
and_elim_l
(
▷
P
)
P
)
-(
l
ö
b
(
▷
P
∧
P
)).
apply
impl_intro_l
.
by
rewrite
{
1
}(
and_elim_r
(
▷
P
))
.
Qed
.
Lemma
later_True
:
▷
True
⊣
⊢
True
.
Proof
.
apply
(
anti_symm
(
⊢
))
;
auto
using
later_intro
.
Qed
.
Lemma
later_impl
P
Q
:
▷
(
P
→
Q
)
⊢
▷
P
→
▷
Q
.
Proof
.
apply
impl_intro_l
;
rewrite
-
later_and
;
eauto
using
impl_elim
.
Qed
.
Lemma
later_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∀
a
,
Φ
a
)
⊣
⊢
(
∀
a
,
▷
Φ
a
).
Proof
.
apply
(
anti_symm
_
)
;
auto
using
later_forall_2
.
apply
forall_intro
=>
x
.
by
rewrite
(
forall_elim
x
).
Qed
.
Lemma
later_exist
`
{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
▷
(
∃
a
,
Φ
a
)
⊣
⊢
(
∃
a
,
▷
Φ
a
).
Proof
.
...
...
@@ -1073,6 +1084,12 @@ Proof.
rewrite
later_exist_false
.
apply
or_elim
;
last
done
.
rewrite
-(
exist_intro
inhabitant
)
;
auto
.
Qed
.
Lemma
later_and
P
Q
:
▷
(
P
∧
Q
)
⊣
⊢
▷
P
∧
▷
Q
.
Proof
.
rewrite
!
and_alt
later_forall
.
by
apply
forall_proper
=>
-[].
Qed
.
Lemma
later_or
P
Q
:
▷
(
P
∨
Q
)
⊣
⊢
▷
P
∨
▷
Q
.
Proof
.
rewrite
!
or_alt
later_exist
.
by
apply
exist_proper
=>
-[].
Qed
.
Lemma
later_impl
P
Q
:
▷
(
P
→
Q
)
⊢
▷
P
→
▷
Q
.
Proof
.
apply
impl_intro_l
;
rewrite
-
later_and
;
eauto
using
impl_elim
.
Qed
.
Lemma
later_wand
P
Q
:
▷
(
P
-
★
Q
)
⊢
▷
P
-
★
▷
Q
.
Proof
.
apply
wand_intro_r
;
rewrite
-
later_sep
;
eauto
using
wand_elim_l
.
Qed
.
Lemma
later_iff
P
Q
:
▷
(
P
↔
Q
)
⊢
▷
P
↔
▷
Q
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment