Commit bf293c65 authored by Robbert Krebbers's avatar Robbert Krebbers

Namespace map RA.

parent a225790a
......@@ -36,6 +36,7 @@ theories/algebra/coPset.v
theories/algebra/deprecated.v
theories/algebra/proofmode_classes.v
theories/algebra/ufrac.v
theories/algebra/namespace_map.v
theories/bi/notation.v
theories/bi/interface.v
theories/bi/derived_connectives.v
......
From iris.algebra Require Export gmap coPset local_updates.
From stdpp Require Import namespaces.
From iris.algebra Require Import updates.
From iris.algebra Require Import proofmode_classes.
Set Default Proof Using "Type".
Record namespace_map (A : Type) := NamespaceMap {
namespace_map_data_proj : gmap positive A;
namespace_map_token_proj : coPset_disj
}.
Add Printing Constructor namespace_map.
Arguments NamespaceMap {_} _ _.
Arguments namespace_map_data_proj {_} _.
Arguments namespace_map_token_proj {_} _.
Instance: Params (@NamespaceMap) 1 := {}.
Instance: Params (@namespace_map_data_proj) 1 := {}.
Instance: Params (@namespace_map_token_proj) 1 := {}.
(** TODO: [positives_flatten] violates the namespace abstraction. *)
Definition namespace_map_data {A : cmraT} (N : namespace) (a : A) : namespace_map A :=
NamespaceMap {[ positives_flatten N := a ]} ε.
Definition namespace_map_token {A : cmraT} (E : coPset) : namespace_map A :=
NamespaceMap (CoPset E).
Instance: Params (@namespace_map_data) 2 := {}.
(* Ofe *)
Section ofe.
Context {A : ofeT}.
Implicit Types x y : namespace_map A.
Instance namespace_map_equiv : Equiv (namespace_map A) := λ x y,
namespace_map_data_proj x namespace_map_data_proj y
namespace_map_token_proj x = namespace_map_token_proj y.
Instance namespace_map_dist : Dist (namespace_map A) := λ n x y,
namespace_map_data_proj x {n} namespace_map_data_proj y
namespace_map_token_proj x = namespace_map_token_proj y.
Global Instance Awesome_ne : NonExpansive2 (@NamespaceMap A).
Proof. by split. Qed.
Global Instance Awesome_proper : Proper (() ==> (=) ==> ()) (@NamespaceMap A).
Proof. by split. Qed.
Global Instance namespace_map_data_proj_ne: NonExpansive (@namespace_map_data_proj A).
Proof. by destruct 1. Qed.
Global Instance namespace_map_data_proj_proper :
Proper (() ==> ()) (@namespace_map_data_proj A).
Proof. by destruct 1. Qed.
Definition namespace_map_ofe_mixin : OfeMixin (namespace_map A).
Proof.
by apply (iso_ofe_mixin
(λ x, (namespace_map_data_proj x, namespace_map_token_proj x))).
Qed.
Canonical Structure namespace_mapC :=
OfeT (namespace_map A) namespace_map_ofe_mixin.
Global Instance NamespaceMap_discrete a b :
Discrete a Discrete b Discrete (NamespaceMap a b).
Proof. by intros ?? [??] [??]; split; apply: discrete. Qed.
Global Instance namespace_map_ofe_discrete :
OfeDiscrete A OfeDiscrete namespace_mapC.
Proof. intros ? [??]; apply _. Qed.
End ofe.
Arguments namespace_mapC : clear implicits.
(* Camera *)
Section cmra.
Context {A : cmraT}.
Implicit Types a b : A.
Implicit Types x y : namespace_map A.
Global Instance namespace_map_data_ne i : NonExpansive (@namespace_map_data A i).
Proof. solve_proper. Qed.
Global Instance namespace_map_data_proper N :
Proper (() ==> ()) (@namespace_map_data A N).
Proof. solve_proper. Qed.
Global Instance namespace_map_data_discrete N a :
Discrete a Discrete (namespace_map_data N a).
Proof. intros. apply NamespaceMap_discrete; apply _. Qed.
Global Instance namespace_map_token_discrete E : Discrete (@namespace_map_token A E).
Proof. intros. apply NamespaceMap_discrete; apply _. Qed.
Instance namespace_map_valid : Valid (namespace_map A) := λ x,
match namespace_map_token_proj x with
| CoPset E =>
(namespace_map_data_proj x) i, namespace_map_data_proj x !! i = None i E
| CoPsetBot => False
end.
Global Arguments namespace_map_valid !_ /.
Instance namespace_map_validN : ValidN (namespace_map A) := λ n x,
match namespace_map_token_proj x with
| CoPset E =>
{n} (namespace_map_data_proj x) i, namespace_map_data_proj x !! i = None i E
| CoPsetBot => False
end.
Global Arguments namespace_map_validN !_ /.
Instance namespace_map_pcore : PCore (namespace_map A) := λ x,
Some (NamespaceMap (core (namespace_map_data_proj x)) ε).
Instance namespace_map_op : Op (namespace_map A) := λ x y,
NamespaceMap (namespace_map_data_proj x namespace_map_data_proj y)
(namespace_map_token_proj x namespace_map_token_proj y).
Definition namespace_map_valid_eq :
valid = λ x, match namespace_map_token_proj x with
| CoPset E =>
(namespace_map_data_proj x)
(* dom (namespace_map_data_proj x) ⊥ E *)
i, namespace_map_data_proj x !! i = None i E
| CoPsetBot => False
end := eq_refl _.
Definition namespace_map_validN_eq :
validN = λ n x, match namespace_map_token_proj x with
| CoPset E =>
{n} (namespace_map_data_proj x)
(* dom (namespace_map_data_proj x) ⊥ E *)
i, namespace_map_data_proj x !! i = None i E
| CoPsetBot => False
end := eq_refl _.
Lemma namespace_map_included x y :
x y
namespace_map_data_proj x namespace_map_data_proj y
namespace_map_token_proj x namespace_map_token_proj y.
Proof.
split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
intros [[z1 Hz1] [z2 Hz2]]; exists (NamespaceMap z1 z2); split; auto.
Qed.
Lemma namespace_map_data_proj_validN n x : {n} x {n} namespace_map_data_proj x.
Proof. by destruct x as [? [?|]]=> // -[??]. Qed.
Lemma namespace_map_token_proj_validN n x : {n} x {n} namespace_map_token_proj x.
Proof. by destruct x as [? [?|]]=> // -[??]. Qed.
Lemma namespace_map_cmra_mixin : CmraMixin (namespace_map A).
Proof.
apply cmra_total_mixin.
- eauto.
- by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
- solve_proper.
- intros n [m1 [E1|]] [m2 [E2|]] [Hm ?]=> // -[??]; split; simplify_eq/=.
+ by rewrite -Hm.
+ intros i. by rewrite -(dist_None n) -Hm dist_None.
- intros [m [E|]]; rewrite namespace_map_valid_eq namespace_map_validN_eq /=
?cmra_valid_validN; naive_solver eauto using 0.
- intros n [m [E|]]; rewrite namespace_map_validN_eq /=;
naive_solver eauto using cmra_validN_S.
- split; simpl; [by rewrite assoc|by rewrite assoc_L].
- split; simpl; [by rewrite comm|by rewrite comm_L].
- split; simpl; [by rewrite cmra_core_l|by rewrite left_id_L].
- split; simpl; [by rewrite cmra_core_idemp|done].
- intros ??; rewrite! namespace_map_included; intros [??].
by split; simpl; apply: cmra_core_mono. (* FIXME: apply cmra_core_mono. fails *)
- intros n [m1 [E1|]] [m2 [E2|]]=> //=; rewrite namespace_map_validN_eq /=.
rewrite {1}/op /cmra_op /=. case_decide; last done.
intros [Hm Hdisj]; split; first by eauto using cmra_validN_op_l.
intros i. move: (Hdisj i). rewrite lookup_op.
case: (m1 !! i)=> [a|]; last auto.
move=> []. by case: (m2 !! i). set_solver.
- intros n x y1 y2 ? [??]; simpl in *.
destruct (cmra_extend n (namespace_map_data_proj x)
(namespace_map_data_proj y1) (namespace_map_data_proj y2))
as (m1&m2&?&?&?); auto using namespace_map_data_proj_validN.
destruct (cmra_extend n (namespace_map_token_proj x)
(namespace_map_token_proj y1) (namespace_map_token_proj y2))
as (E1&E2&?&?&?); auto using namespace_map_token_proj_validN.
by exists (NamespaceMap m1 E1), (NamespaceMap m2 E2).
Qed.
Canonical Structure namespace_mapR :=
CmraT (namespace_map A) namespace_map_cmra_mixin.
Global Instance namespace_map_cmra_discrete :
CmraDiscrete A CmraDiscrete namespace_mapR.
Proof.
split; first apply _.
intros [m [E|]]; rewrite namespace_map_validN_eq namespace_map_valid_eq //=.
naive_solver eauto using (cmra_discrete_valid m).
Qed.
Instance namespace_map_empty : Unit (namespace_map A) := NamespaceMap ε ε.
Lemma namespace_map_ucmra_mixin : UcmraMixin (namespace_map A).
Proof.
split; simpl.
- rewrite namespace_map_valid_eq /=. split. apply ucmra_unit_valid. set_solver.
- split; simpl; [by rewrite left_id|by rewrite left_id_L].
- do 2 constructor; [apply (core_id_core _)|done].
Qed.
Canonical Structure namespace_mapUR :=
UcmraT (namespace_map A) namespace_map_ucmra_mixin.
Global Instance namespace_map_data_core_id N a :
CoreId a CoreId (namespace_map_data N a).
Proof. do 2 constructor; simpl; auto. apply core_id_core, _. Qed.
Lemma namespace_map_data_valid N a : (namespace_map_data N a) a.
Proof. rewrite namespace_map_valid_eq /= singleton_valid. set_solver. Qed.
Lemma namespace_map_token_valid E : (namespace_map_token E).
Proof. rewrite namespace_map_valid_eq /=. split. done. by left. Qed.
Lemma namespace_map_data_op N a b :
namespace_map_data N (a b) = namespace_map_data N a namespace_map_data N b.
Proof.
by rewrite {2}/op /namespace_map_op /namespace_map_data /= -op_singleton left_id_L.
Qed.
Lemma namespace_map_data_mono N a b :
a b namespace_map_data N a namespace_map_data N b.
Proof. intros [c ->]. rewrite namespace_map_data_op. apply cmra_included_l. Qed.
Global Instance is_op_namespace_map_data N a b1 b2 :
IsOp a b1 b2
IsOp' (namespace_map_data N a) (namespace_map_data N b1) (namespace_map_data N b2).
Proof. rewrite /IsOp' /IsOp=> ->. by rewrite namespace_map_data_op. Qed.
Lemma namespace_map_token_union E1 E2 :
E1 ## E2
namespace_map_token (E1 E2) = namespace_map_token E1 namespace_map_token E2.
Proof.
intros. by rewrite /op /namespace_map_op
/namespace_map_token /= coPset_disj_union // left_id_L.
Qed.
Lemma namespace_map_token_difference E1 E2 :
E1 E2
namespace_map_token E2 = namespace_map_token E1 namespace_map_token (E2 E1).
Proof.
intros. rewrite -namespace_map_token_union; last set_solver.
by rewrite -union_difference_L.
Qed.
Lemma namespace_map_token_valid_op E1 E2 :
(namespace_map_token E1 namespace_map_token E2) E1 ## E2.
Proof.
rewrite namespace_map_valid_eq /= {1}/op /cmra_op /=. case_decide; last done.
split; [done|]; intros _. split.
- by rewrite left_id.
- intros i. rewrite lookup_op lookup_empty. auto.
Qed.
(** [↑N ⊆ E] is stronger than needed, just [positives_flatten N ∈ E] would be
sufficient. However, we do not have convenient infrastructure to prove the
latter, so we use the former. *)
Lemma namespace_map_alloc_update E N a :
N E a namespace_map_token E ~~> namespace_map_data N a.
Proof.
assert (positives_flatten N (N : coPset)).
{ rewrite nclose_eq. apply elem_coPset_suffixes.
exists 1%positive. by rewrite left_id_L. }
intros ??. apply cmra_total_update=> n [mf [Ef|]] //.
rewrite namespace_map_validN_eq /= {1}/op /cmra_op /=. case_decide; last done.
rewrite left_id_L {1}left_id. intros [Hmf Hdisj]; split.
- destruct (Hdisj (positives_flatten N)) as [Hmfi|]; last set_solver.
move: Hmfi. rewrite lookup_op lookup_empty left_id_L=> Hmfi.
intros j. rewrite lookup_op.
destruct (decide (positives_flatten N = j)) as [<-|].
+ rewrite Hmfi lookup_singleton right_id_L. by apply cmra_valid_validN.
+ by rewrite lookup_singleton_ne // left_id_L.
- intros j. destruct (decide (positives_flatten N = j)); first set_solver.
rewrite lookup_op lookup_singleton_ne //.
destruct (Hdisj j) as [Hmfi|?]; last set_solver.
move: Hmfi. rewrite lookup_op lookup_empty; auto.
Qed.
Lemma namespace_map_updateP P (Q : namespace_map A Prop) N a :
a ~~>: P
( a', P a' Q (namespace_map_data N a')) namespace_map_data N a ~~>: Q.
Proof.
intros Hup HP. apply cmra_total_updateP=> n [mf [Ef|]] //.
rewrite namespace_map_validN_eq /= left_id_L. intros [Hmf Hdisj].
destruct (Hup n (mf !! positives_flatten N)) as (a'&?&?).
{ move: (Hmf (positives_flatten N)).
by rewrite lookup_op lookup_singleton Some_op_opM. }
exists (namespace_map_data N a'); split; first by eauto.
rewrite /= left_id_L. split.
- intros j. destruct (decide (positives_flatten N = j)) as [<-|].
+ by rewrite lookup_op lookup_singleton Some_op_opM.
+ rewrite lookup_op lookup_singleton_ne // left_id_L.
move: (Hmf j). rewrite lookup_op. eauto using cmra_validN_op_r.
- intros j. move: (Hdisj j).
rewrite !lookup_op !op_None !lookup_singleton_None. naive_solver.
Qed.
Lemma namespace_map_update N a b :
a ~~> b namespace_map_data N a ~~> namespace_map_data N b.
Proof.
rewrite !cmra_update_updateP. eauto using namespace_map_updateP with subst.
Qed.
End cmra.
Arguments namespace_mapR : clear implicits.
Arguments namespace_mapUR : clear implicits.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment