Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
bdce0d4a
Commit
bdce0d4a
authored
Aug 31, 2016
by
Robbert Krebbers
Browse files
Prove more rules for always in the logic.
parent
e06423f4
Changes
1
Hide whitespace changes
Inline
Side-by-side
algebra/upred.v
View file @
bdce0d4a
...
...
@@ -921,26 +921,23 @@ Lemma sep_forall_r {A} (Φ : A → uPred M) Q : (∀ a, Φ a) ★ Q ⊢ ∀ a,
Proof
.
by
apply
forall_intro
=>
a
;
rewrite
forall_elim
.
Qed
.
(* Always *)
Lemma
always_
pure
φ
:
□
■
φ
⊣
⊢
■
φ
.
Proof
.
by
unseal
.
Qed
.
Lemma
always_
mono
P
Q
:
(
P
⊢
Q
)
→
□
P
⊢
□
Q
.
Proof
.
intros
HP
;
unseal
;
split
=>
n
x
?
/=.
by
apply
HP
,
cmra_core_validN
.
Qed
.
Lemma
always_elim
P
:
□
P
⊢
P
.
Proof
.
unseal
;
split
=>
n
x
?
/=.
eauto
using
uPred_mono
,
@
cmra_included_core
,
cmra_included_includedN
.
Qed
.
Lemma
always_intro'
P
Q
:
(
□
P
⊢
Q
)
→
□
P
⊢
□
Q
.
Proof
.
unseal
=>
HPQ
;
split
=>
n
x
??
;
apply
HPQ
;
simpl
;
auto
using
@
cmra_core_validN
.
by
rewrite
cmra_core_idemp
.
Qed
.
Lemma
always_and
P
Q
:
□
(
P
∧
Q
)
⊣
⊢
□
P
∧
□
Q
.
Proof
.
by
unseal
.
Qed
.
Lemma
always_or
P
Q
:
□
(
P
∨
Q
)
⊣
⊢
□
P
∨
□
Q
.
Lemma
always_idemp
P
:
□
P
⊢
□
□
P
.
Proof
.
unseal
;
split
=>
n
x
??
/=.
by
rewrite
cmra_core_idemp
.
Qed
.
Lemma
always_pure_2
φ
:
■
φ
⊢
□
■
φ
.
Proof
.
by
unseal
.
Qed
.
Lemma
always_forall
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
□
∀
a
,
Ψ
a
)
⊣
⊢
(
∀
a
,
□
Ψ
a
).
Lemma
always_forall
_2
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
∀
a
,
□
Ψ
a
)
⊢
(
□
∀
a
,
Ψ
a
).
Proof
.
by
unseal
.
Qed
.
Lemma
always_exist
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
□
∃
a
,
Ψ
a
)
⊣
⊢
(
∃
a
,
□
Ψ
a
).
Lemma
always_exist
_1
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
□
∃
a
,
Ψ
a
)
⊢
(
∃
a
,
□
Ψ
a
).
Proof
.
by
unseal
.
Qed
.
Lemma
always_and_sep_1
P
Q
:
□
(
P
∧
Q
)
⊢
□
(
P
★
Q
).
Proof
.
unseal
;
split
=>
n
x
?
[??].
...
...
@@ -951,18 +948,37 @@ Proof.
unseal
;
split
=>
n
x
?
[??]
;
exists
(
core
x
),
x
;
simpl
in
*.
by
rewrite
cmra_core_l
cmra_core_idemp
.
Qed
.
Lemma
always_later
P
:
□
▷
P
⊣
⊢
▷
□
P
.
Proof
.
by
unseal
.
Qed
.
(* Always derived *)
Lemma
always_mono
P
Q
:
(
P
⊢
Q
)
→
□
P
⊢
□
Q
.
Proof
.
intros
.
apply
always_intro'
.
by
rewrite
always_elim
.
Qed
.
Hint
Resolve
always_mono
.
Hint
Resolve
always_mono
always_elim
.
Global
Instance
always_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
(@
uPred_always
M
).
Proof
.
intros
P
Q
;
apply
always_mono
.
Qed
.
Global
Instance
always_flip_mono'
:
Proper
(
flip
(
⊢
)
==>
flip
(
⊢
))
(@
uPred_always
M
).
Proof
.
intros
P
Q
;
apply
always_mono
.
Qed
.
Lemma
always_intro'
P
Q
:
(
□
P
⊢
Q
)
→
□
P
⊢
□
Q
.
Proof
.
intros
<-.
apply
always_idemp
.
Qed
.
Lemma
always_pure
φ
:
□
■
φ
⊣
⊢
■
φ
.
Proof
.
apply
(
anti_symm
_
)
;
auto
using
always_pure_2
.
Qed
.
Lemma
always_forall
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
□
∀
a
,
Ψ
a
)
⊣
⊢
(
∀
a
,
□
Ψ
a
).
Proof
.
apply
(
anti_symm
_
)
;
auto
using
always_forall_2
.
apply
forall_intro
=>
x
.
by
rewrite
(
forall_elim
x
).
Qed
.
Lemma
always_exist
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
□
∃
a
,
Ψ
a
)
⊣
⊢
(
∃
a
,
□
Ψ
a
).
Proof
.
apply
(
anti_symm
_
)
;
auto
using
always_exist_1
.
apply
exist_elim
=>
x
.
by
rewrite
(
exist_intro
x
).
Qed
.
Lemma
always_and
P
Q
:
□
(
P
∧
Q
)
⊣
⊢
□
P
∧
□
Q
.
Proof
.
rewrite
!
and_alt
always_forall
.
by
apply
forall_proper
=>
-[].
Qed
.
Lemma
always_or
P
Q
:
□
(
P
∨
Q
)
⊣
⊢
□
P
∨
□
Q
.
Proof
.
rewrite
!
or_alt
always_exist
.
by
apply
exist_proper
=>
-[].
Qed
.
Lemma
always_impl
P
Q
:
□
(
P
→
Q
)
⊢
□
P
→
□
Q
.
Proof
.
apply
impl_intro_l
;
rewrite
-
always_and
.
...
...
@@ -975,6 +991,7 @@ Proof.
{
intros
n
;
solve_proper
.
}
rewrite
-(
eq_refl
a
)
always_pure
;
auto
.
Qed
.
Lemma
always_and_sep
P
Q
:
□
(
P
∧
Q
)
⊣
⊢
□
(
P
★
Q
).
Proof
.
apply
(
anti_symm
(
⊢
))
;
auto
using
always_and_sep_1
.
Qed
.
Lemma
always_and_sep_l'
P
Q
:
□
P
∧
Q
⊣
⊢
□
P
★
Q
.
...
...
@@ -983,10 +1000,11 @@ Lemma always_and_sep_r' P Q : P ∧ □ Q ⊣⊢ P ★ □ Q.
Proof
.
by
rewrite
!(
comm
_
P
)
always_and_sep_l'
.
Qed
.
Lemma
always_sep
P
Q
:
□
(
P
★
Q
)
⊣
⊢
□
P
★
□
Q
.
Proof
.
by
rewrite
-
always_and_sep
-
always_and_sep_l'
always_and
.
Qed
.
Lemma
always_wand
P
Q
:
□
(
P
-
★
Q
)
⊢
□
P
-
★
□
Q
.
Proof
.
by
apply
wand_intro_r
;
rewrite
-
always_sep
wand_elim_l
.
Qed
.
Lemma
always_sep_dup'
P
:
□
P
⊣
⊢
□
P
★
□
P
.
Proof
.
by
rewrite
-
always_sep
-
always_and_sep
(
idemp
_
).
Qed
.
Lemma
always_wand
P
Q
:
□
(
P
-
★
Q
)
⊢
□
P
-
★
□
Q
.
Proof
.
by
apply
wand_intro_r
;
rewrite
-
always_sep
wand_elim_l
.
Qed
.
Lemma
always_wand_impl
P
Q
:
□
(
P
-
★
Q
)
⊣
⊢
□
(
P
→
Q
).
Proof
.
apply
(
anti_symm
(
⊢
))
;
[|
by
rewrite
-
impl_wand
].
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment