Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
b6a32bbb
Commit
b6a32bbb
authored
Jan 23, 2016
by
Ralf Jung
Browse files
derive that when we obtain validity of an ownG, we can keep ownership
parent
e241324a
Changes
3
Hide whitespace changes
Inline
Side-by-side
iris/ownership.v
View file @
b6a32bbb
...
...
@@ -55,6 +55,8 @@ Proof.
Qed
.
Lemma
ownG_valid
m
:
(
ownG
m
)
⊑
(
✓
m
).
Proof
.
by
rewrite
/
ownG
uPred
.
own_valid
;
apply
uPred
.
valid_mono
=>
n
[?
[]].
Qed
.
Lemma
ownG_valid_r
m
:
(
ownG
m
)
⊑
(
ownG
m
★
✓
m
).
Proof
.
apply
uPred
.
always_entails_r'
,
ownG_valid
;
by
apply
_
.
Qed
.
Global
Instance
ownG_timeless
m
:
Timeless
m
→
TimelessP
(
ownG
m
).
Proof
.
rewrite
/
ownG
;
apply
_
.
Qed
.
...
...
iris/viewshifts.v
View file @
b6a32bbb
...
...
@@ -19,7 +19,7 @@ Implicit Types P Q : iProp Σ.
Implicit
Types
m
:
iGst
Σ
.
Import
uPred
.
Lemma
vs_alt
E1
E2
P
Q
:
P
⊑
pvs
E1
E2
Q
→
P
>{
E1
,
E2
}>
Q
.
Lemma
vs_alt
E1
E2
P
Q
:
(
P
⊑
pvs
E1
E2
Q
)
→
P
>{
E1
,
E2
}>
Q
.
Proof
.
intros
;
rewrite
-{
1
}
always_const
;
apply
always_intro
,
impl_intro_l
.
by
rewrite
always_const
(
right_id
_
_
).
...
...
modures/logic.v
View file @
b6a32bbb
...
...
@@ -433,6 +433,15 @@ Lemma impl_elim_l' P Q R : P ⊑ (Q → R) → (P ∧ Q) ⊑ R.
Proof
.
intros
;
apply
impl_elim
with
Q
;
auto
.
Qed
.
Lemma
impl_elim_r'
P
Q
R
:
Q
⊑
(
P
→
R
)
→
(
P
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
impl_elim
with
P
;
auto
.
Qed
.
Lemma
impl_entails
P
Q
:
True
⊑
(
P
→
Q
)
→
P
⊑
Q
.
Proof
.
intros
H
;
eapply
impl_elim
;
last
reflexivity
.
rewrite
-
H
.
by
apply
True_intro
.
Qed
.
Lemma
entails_impl
P
Q
:
(
P
⊑
Q
)
→
True
⊑
(
P
→
Q
).
Proof
.
intros
H
;
apply
impl_intro_l
.
by
rewrite
-
H
and_elim_l
.
Qed
.
Lemma
const_elim_l
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
■
φ
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
...
...
@@ -737,6 +746,26 @@ Proof.
apply
always_intro
,
impl_intro_r
.
by
rewrite
always_and_sep_l
always_elim
wand_elim_l
.
Qed
.
Lemma
always_impl_l
P
Q
:
(
P
→
□
Q
)
⊑
(
P
→
□
Q
★
P
).
Proof
.
rewrite
-
always_and_sep_l
.
apply
impl_intro_l
,
and_intro
.
-
by
rewrite
impl_elim_r
.
-
by
rewrite
and_elim_l
.
Qed
.
Lemma
always_impl_r
P
Q
:
(
P
→
□
Q
)
⊑
(
P
→
P
★
□
Q
).
Proof
.
by
rewrite
commutative
always_impl_l
.
Qed
.
Lemma
always_entails_l
P
Q
:
(
P
⊑
□
Q
)
→
P
⊑
(
□
Q
★
P
).
Proof
.
intros
H
.
apply
impl_entails
.
rewrite
-
always_impl_l
.
by
apply
entails_impl
.
Qed
.
Lemma
always_entails_r
P
Q
:
(
P
⊑
□
Q
)
→
P
⊑
(
P
★
□
Q
).
Proof
.
intros
H
.
apply
impl_entails
.
rewrite
-
always_impl_r
.
by
apply
entails_impl
.
Qed
.
(* Own *)
Lemma
own_op
(
a1
a2
:
M
)
:
...
...
@@ -909,4 +938,13 @@ Lemma always_and_sep_r' P Q `{!AlwaysStable Q} : (P ∧ Q)%I ≡ (P ★ Q)%I.
Proof
.
by
rewrite
-(
always_always
Q
)
always_and_sep_r
.
Qed
.
Lemma
always_sep_dup'
P
`
{!
AlwaysStable
P
}
:
P
≡
(
P
★
P
)%
I
.
Proof
.
by
rewrite
-(
always_always
P
)
-
always_sep_dup
.
Qed
.
Lemma
always_impl_l'
P
Q
`
{!
AlwaysStable
Q
}
:
(
P
→
Q
)
⊑
(
P
→
Q
★
P
).
Proof
.
by
rewrite
-(
always_always
Q
)
always_impl_l
.
Qed
.
Lemma
always_impl_r'
P
Q
`
{!
AlwaysStable
Q
}
:
(
P
→
Q
)
⊑
(
P
→
P
★
Q
).
Proof
.
by
rewrite
-(
always_always
Q
)
always_impl_r
.
Qed
.
Lemma
always_entails_l'
P
Q
`
{!
AlwaysStable
Q
}
:
(
P
⊑
Q
)
→
P
⊑
(
Q
★
P
).
Proof
.
by
rewrite
-(
always_always
Q
)
;
apply
always_entails_l
.
Qed
.
Lemma
always_entails_r'
P
Q
`
{!
AlwaysStable
Q
}
:
(
P
⊑
Q
)
→
P
⊑
(
P
★
Q
).
Proof
.
by
rewrite
-(
always_always
Q
)
;
apply
always_entails_r
.
Qed
.
End
uPred_logic
.
End
uPred
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment