Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
a121e077
Commit
a121e077
authored
Dec 21, 2015
by
Robbert Krebbers
Browse files
Contractive and nonexpansiveness properties of later.
parent
457cf079
Changes
1
Hide whitespace changes
Inline
Sidebyside
modures/cofe.v
View file @
a121e077
...
...
@@ 278,8 +278,10 @@ Canonical Structure boolC := leibnizC bool.
(** Later *)
Inductive
later
(
A
:
Type
)
:
Type
:
=
Later
{
later_car
:
A
}.
Add
Printing
Constructor
later
.
Arguments
Later
{
_
}
_
.
Arguments
later_car
{
_
}
_
.
Section
later
.
Instance
later_equiv
`
{
Equiv
A
}
:
Equiv
(
later
A
)
:
=
λ
x
y
,
later_car
x
≡
later_car
y
.
...
...
@@ 305,12 +307,14 @@ Section later.
Qed
.
Canonical
Structure
laterC
(
A
:
cofeT
)
:
cofeT
:
=
CofeT
(
later
A
).
Global
Instance
Later_contractive
`
{
Dist
A
}
:
Contractive
(@
Later
A
).
Proof
.
by
intros
n
??.
Qed
.
Definition
later_map
{
A
B
}
(
f
:
A
→
B
)
(
x
:
later
A
)
:
later
B
:
=
Later
(
f
(
later_car
x
)).
Instance
later_
f
map_ne
`
{
Cofe
A
,
Cofe
B
}
(
f
:
A
→
B
)
:
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
)
→
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(
later_map
f
).
Proof
.
intros
Hf
[
n
]
[
x
]
[
y
]
?
;
do
2
red
;
simpl
.
done
.
by
apply
Hf
.
Qed
.
Global
Instance
later_map_ne
`
{
Cofe
A
,
Cofe
B
}
(
f
:
A
→
B
)
n
:
Proper
(
dist
(
pred
n
)
==>
dist
(
pred
n
)
)
f
→
Proper
(
dist
n
==>
dist
n
)
(
later_map
f
)

0
.
Proof
.
destruct
n
as
[
n
]
;
intros
Hf
[
x
]
[
y
]
?
;
do
2
red
;
simpl
;
auto
.
Qed
.
Lemma
later_fmap_id
{
A
}
(
x
:
later
A
)
:
later_map
id
x
=
x
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
later_fmap_compose
{
A
B
C
}
(
f
:
A
→
B
)
(
g
:
B
→
C
)
(
x
:
later
A
)
:
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment