Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
a09a8247
Commit
a09a8247
authored
Jan 05, 2017
by
Ralf Jung
Browse files
"Proof using" hints for agree.v
by Janno
parent
3a5511e7
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/algebra/agree.v
View file @
a09a8247
From
iris
.
algebra
Require
Export
cmra
.
From
iris
.
algebra
Require
Import
list
.
From
iris
.
base_logic
Require
Import
base_logic
.
(* FIXME: This file needs a 'Proof Using' hint. *)
Local
Arguments
validN
_
_
_
!
_
/.
Local
Arguments
valid
_
_
!
_
/.
Local
Arguments
op
_
_
_
!
_
/.
...
...
@@ -48,6 +46,8 @@ Qed.
Section
list_theory
.
Context
`
(
R
:
relation
A
)
`
{
Equivalence
A
R
}.
Collection
Hyps
:
=
Type
H
.
Set
Default
Proof
Using
"Hyps"
.
Global
Instance
:
PreOrder
(
list_setincl
R
).
Proof
.
...
...
@@ -68,14 +68,14 @@ Section list_theory.
Global
Instance
list_setincl_subrel
`
(
R'
:
relation
A
)
:
subrelation
R
R'
→
subrelation
(
list_setincl
R
)
(
list_setincl
R'
).
Proof
.
Proof
using
.
intros
HRR'
al
bl
Hab
.
intros
a
Ha
.
destruct
(
Hab
_
Ha
)
as
(
b
&
Hb
&
HR
).
exists
b
.
split
;
first
done
.
exact
:
HRR'
.
Qed
.
Global
Instance
list_setequiv_subrel
`
(
R'
:
relation
A
)
:
subrelation
R
R'
→
subrelation
(
list_setequiv
R
)
(
list_setequiv
R'
).
Proof
.
intros
HRR'
??
[??].
split
;
exact
:
list_setincl_subrel
.
Qed
.
Proof
using
.
intros
HRR'
??
[??].
split
;
exact
:
list_setincl_subrel
.
Qed
.
Global
Instance
list_setincl_perm
:
subrelation
(
≡
ₚ
)
(
list_setincl
R
).
Proof
.
...
...
@@ -144,7 +144,7 @@ Section list_theory.
Lemma
list_setincl_singleton_rev
a
b
:
list_setincl
R
[
a
]
[
b
]
→
R
a
b
.
Proof
.
Proof
using
.
intros
Hl
.
destruct
(
Hl
a
)
as
(?
&
->%
elem_of_list_singleton
&
HR
)
;
last
done
.
by
apply
elem_of_list_singleton
.
Qed
.
...
...
@@ -191,10 +191,12 @@ Section list_theory.
Section
fmap
.
Context
`
(
R'
:
relation
B
)
(
f
:
A
→
B
)
{
Hf
:
Proper
(
R
==>
R'
)
f
}.
Collection
Hyps
:
=
Type
Hf
.
Set
Default
Proof
Using
"Hyps"
.
Global
Instance
list_setincl_fmap
:
Proper
(
list_setincl
R
==>
list_setincl
R'
)
(
fmap
f
).
Proof
.
Proof
using
Hf
.
intros
al
bl
Hab
a'
(
a
&
->
&
Ha
)%
elem_of_list_fmap
.
destruct
(
Hab
_
Ha
)
as
(
b
&
Hb
&
HR
).
exists
(
f
b
).
split
;
first
eapply
elem_of_list_fmap
;
eauto
.
...
...
@@ -202,12 +204,12 @@ Section list_theory.
Global
Instance
list_setequiv_fmap
:
Proper
(
list_setequiv
R
==>
list_setequiv
R'
)
(
fmap
f
).
Proof
.
intros
??
[??].
split
;
apply
list_setincl_fmap
;
done
.
Qed
.
Proof
using
Hf
.
intros
??
[??].
split
;
apply
list_setincl_fmap
;
done
.
Qed
.
Lemma
list_agrees_fmap
`
{
Equivalence
_
R'
}
al
:
list_agrees
R
al
→
list_agrees
R'
(
f
<$>
al
).
Proof
.
move
=>
/
list_agrees_alt
Hl
.
apply
<-
(
list_agrees_alt
R'
)=>
a'
b'
.
Proof
using
All
.
move
=>
/
list_agrees_alt
Hl
.
apply
(
list_agrees_alt
R'
)
=>
a'
b'
.
intros
(
a
&
->
&
Ha
)%
elem_of_list_fmap
(
b
&
->
&
Hb
)%
elem_of_list_fmap
.
apply
Hf
.
exact
:
Hl
.
Qed
.
...
...
@@ -217,6 +219,7 @@ Section list_theory.
End
list_theory
.
Section
agree
.
Set
Default
Proof
Using
"Type"
.
Context
{
A
:
ofeT
}.
Definition
agree_list
(
x
:
agree
A
)
:
=
agree_car
x
::
agree_with
x
.
...
...
@@ -418,8 +421,9 @@ Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
Section
agree_map
.
Context
{
A
B
:
ofeT
}
(
f
:
A
→
B
)
`
{
Hf
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
}.
Collection
Hyps
:
=
Type
Hf
.
Instance
agree_map_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(
agree_map
f
).
Proof
.
Proof
using
Hyps
.
intros
x
y
Hxy
.
change
(
list_setequiv
(
dist
n
)(
f
<$>
(
agree_list
x
))(
f
<$>
(
agree_list
y
))).
eapply
list_setequiv_fmap
;
last
exact
Hxy
.
apply
_
.
...
...
@@ -435,7 +439,7 @@ Section agree_map.
Qed
.
Global
Instance
agree_map_monotone
:
CMRAMonotone
(
agree_map
f
).
Proof
.
Proof
using
Hyps
.
split
;
first
apply
_
.
-
intros
n
x
.
rewrite
/
cmra_validN
/
validN
/=
/
agree_validN
/=
=>
?.
change
(
list_agrees
(
dist
n
)
(
f
<$>
agree_list
x
)).
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment