diff --git a/iris/model.v b/iris/model.v index 9f6d7290b3344ae3a032f0f6d527125657e8ddb9..6097d19157b9355f616a80fb4db55f8ddf56b761 100644 --- a/iris/model.v +++ b/iris/model.v @@ -1,216 +1,6 @@ -Require Export modures.logic modures.cmra. -Require Export modures.fin_maps modures.agree modures.excl. +Require Export modures.logic iris.resources. Require Import modures.cofe_solver. -(* Parameter *) -Record iParam := IParam { - istate : Type; - icmra : cofeT → cmraT; - icmra_empty A : Empty (icmra A); - icmra_empty_spec A : RAIdentity (icmra A); - icmra_map {A B} (f : A -n> B) : icmra A -n> icmra B; - icmra_map_ne {A B} n : Proper (dist n ==> dist n) (@icmra_map A B); - icmra_map_id {A : cofeT} (x : icmra A) : icmra_map cid x ≡ x; - icmra_map_compose {A B C} (f : A -n> B) (g : B -n> C) x : - icmra_map (g ◎ f) x ≡ icmra_map g (icmra_map f x); - icmra_map_mono {A B} (f : A -n> B) : CMRAMonotone (icmra_map f) -}. -Existing Instances icmra_empty icmra_empty_spec icmra_map_ne icmra_map_mono. - -Lemma icmra_map_ext (Σ : iParam) {A B} (f g : A -n> B) m : - (∀ x, f x ≡ g x) → icmra_map Σ f m ≡ icmra_map Σ g m. -Proof. - by intros ?; apply equiv_dist=> n; apply icmra_map_ne=> ?; apply equiv_dist. -Qed. - -(* Resources *) -Record res (Σ : iParam) (A : cofeT) := Res { - wld : mapRA positive (agreeRA (laterC A)); - pst : exclRA (leibnizC (istate Σ)); - gst : icmra Σ (laterC A); -}. -Add Printing Constructor res. -Arguments Res {_ _} _ _ _. -Arguments wld {_ _} _. -Arguments pst {_ _} _. -Arguments gst {_ _} _. -Instance: Params (@Res) 2. -Instance: Params (@wld) 2. -Instance: Params (@pst) 2. -Instance: Params (@gst) 2. - -Section res. -Context (Σ : iParam) (A : cofeT). -Implicit Types r : res Σ A. - -Inductive res_equiv' (r1 r2 : res Σ A) := Res_equiv : - wld r1 ≡ wld r2 → pst r1 ≡ pst r2 → gst r1 ≡ gst r2 → res_equiv' r1 r2. -Instance res_equiv : Equiv (res Σ A) := res_equiv'. -Inductive res_dist' (n : nat) (r1 r2 : res Σ A) := Res_dist : - wld r1 ={n}= wld r2 → pst r1 ={n}= pst r2 → gst r1 ={n}= gst r2 → - res_dist' n r1 r2. -Instance res_dist : Dist (res Σ A) := res_dist'. -Global Instance Res_ne n : - Proper (dist n ==> dist n ==> dist n ==> dist n) (@Res Σ A). -Proof. done. Qed. -Global Instance Res_proper : Proper ((≡) ==> (≡) ==> (≡) ==> (≡)) (@Res Σ A). -Proof. done. Qed. -Global Instance wld_ne n : Proper (dist n ==> dist n) (@wld Σ A). -Proof. by destruct 1. Qed. -Global Instance wld_proper : Proper ((≡) ==> (≡)) (@wld Σ A). -Proof. by destruct 1. Qed. -Global Instance pst_ne n : Proper (dist n ==> dist n) (@pst Σ A). -Proof. by destruct 1. Qed. -Global Instance pst_ne' n : Proper (dist (S n) ==> (≡)) (@pst Σ A). -Proof. - intros σ σ' [???]; apply (timeless _), dist_le with (S n); auto with lia. -Qed. -Global Instance pst_proper : Proper ((≡) ==> (≡)) (@pst Σ A). -Proof. by destruct 1. Qed. -Global Instance gst_ne n : Proper (dist n ==> dist n) (@gst Σ A). -Proof. by destruct 1. Qed. -Global Instance gst_proper : Proper ((≡) ==> (≡)) (@gst Σ A). -Proof. by destruct 1. Qed. -Instance res_compl : Compl (res Σ A) := λ c, - Res (compl (chain_map wld c)) - (compl (chain_map pst c)) (compl (chain_map gst c)). -Definition res_cofe_mixin : CofeMixin (res Σ A). -Proof. - split. - * intros w1 w2; split. - + by destruct 1; constructor; apply equiv_dist. - + by intros Hw; constructor; apply equiv_dist=>n; destruct (Hw n). - * intros n; split. - + done. - + by destruct 1; constructor. - + do 2 destruct 1; constructor; etransitivity; eauto. - * by destruct 1; constructor; apply dist_S. - * done. - * intros c n; constructor. - + apply (conv_compl (chain_map wld c) n). - + apply (conv_compl (chain_map pst c) n). - + apply (conv_compl (chain_map gst c) n). -Qed. -Canonical Structure resC : cofeT := CofeT res_cofe_mixin. -Global Instance res_timeless r : - Timeless (wld r) → Timeless (gst r) → Timeless r. -Proof. by destruct 3; constructor; try apply (timeless _). Qed. - -Instance res_op : Op (res Σ A) := λ r1 r2, - Res (wld r1 ⋅ wld r2) (pst r1 ⋅ pst r2) (gst r1 ⋅ gst r2). -Global Instance res_empty : Empty (res Σ A) := Res ∅ ∅ ∅. -Instance res_unit : Unit (res Σ A) := λ r, - Res (unit (wld r)) (unit (pst r)) (unit (gst r)). -Instance res_valid : Valid (res Σ A) := λ r, ✓ (wld r) ∧ ✓ (pst r) ∧ ✓ (gst r). -Instance res_validN : ValidN (res Σ A) := λ n r, - ✓{n} (wld r) ∧ ✓{n} (pst r) ∧ ✓{n} (gst r). -Instance res_minus : Minus (res Σ A) := λ r1 r2, - Res (wld r1 ⩪ wld r2) (pst r1 ⩪ pst r2) (gst r1 ⩪ gst r2). -Lemma res_included (r1 r2 : res Σ A) : - r1 ≼ r2 ↔ wld r1 ≼ wld r2 ∧ pst r1 ≼ pst r2 ∧ gst r1 ≼ gst r2. -Proof. - split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)]. - intros [r Hr]; split_ands; - [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr. -Qed. -Lemma res_includedN (r1 r2 : res Σ A) n : - r1 ≼{n} r2 ↔ wld r1 ≼{n} wld r2 ∧ pst r1 ≼{n} pst r2 ∧ gst r1 ≼{n} gst r2. -Proof. - split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)]. - intros [r Hr]; split_ands; - [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr. -Qed. -Definition res_cmra_mixin : CMRAMixin (res Σ A). -Proof. - split. - * by intros n x [???] ? [???]; constructor; simpl in *; cofe_subst. - * by intros n [???] ? [???]; constructor; simpl in *; cofe_subst. - * by intros n [???] ? [???] (?&?&?); split_ands'; simpl in *; cofe_subst. - * by intros n [???] ? [???] [???] ? [???]; - constructor; simpl in *; cofe_subst. - * done. - * by intros n ? (?&?&?); split_ands'; apply cmra_valid_S. - * intros r; unfold valid, res_valid, validN, res_validN. - rewrite !cmra_valid_validN; naive_solver. - * intros ???; constructor; simpl; apply (associative _). - * intros ??; constructor; simpl; apply (commutative _). - * intros ?; constructor; simpl; apply ra_unit_l. - * intros ?; constructor; simpl; apply ra_unit_idempotent. - * intros n r1 r2; rewrite !res_includedN. - by intros (?&?&?); split_ands'; apply cmra_unit_preserving. - * intros n r1 r2 (?&?&?); - split_ands'; simpl in *; eapply cmra_valid_op_l; eauto. - * intros n r1 r2; rewrite res_includedN; intros (?&?&?). - by constructor; apply cmra_op_minus. -Qed. -Global Instance res_ra_empty : RAIdentity (res Σ A). -Proof. - by repeat split; simpl; repeat apply ra_empty_valid; rewrite (left_id _ _). -Qed. - -Definition res_cmra_extend_mixin : CMRAExtendMixin (res Σ A). -Proof. - intros n r r1 r2 (?&?&?) [???]; simpl in *. - destruct (cmra_extend_op n (wld r) (wld r1) (wld r2)) as ([w w']&?&?&?), - (cmra_extend_op n (pst r) (pst r1) (pst r2)) as ([σ σ']&?&?&?), - (cmra_extend_op n (gst r) (gst r1) (gst r2)) as ([m m']&?&?&?); auto. - by exists (Res w σ m, Res w' σ' m'). -Qed. -Canonical Structure resRA : cmraT := - CMRAT res_cofe_mixin res_cmra_mixin res_cmra_extend_mixin. -Lemma Res_op w1 w2 σ1 σ2 m1 m2 : - Res w1 σ1 m1 ⋅ Res w2 σ2 m2 = Res (w1 ⋅ w2) (σ1 ⋅ σ2) (m1 ⋅ m2). -Proof. done. Qed. -Lemma Res_unit w σ m : unit (Res w σ m) = Res (unit w) (unit σ) (unit m). -Proof. done. Qed. -End res. - -Definition res_map {Σ A B} (f : A -n> B) (r : res Σ A) : res Σ B := - Res (agree_map (later_map f) <$> (wld r)) - (pst r) - (icmra_map Σ (laterC_map f) (gst r)). -Instance res_map_ne Σ (A B : cofeT) (f : A -n> B) : - (∀ n, Proper (dist n ==> dist n) f) → - ∀ n, Proper (dist n ==> dist n) (@res_map Σ _ _ f). -Proof. by intros Hf n [] ? [???]; constructor; simpl in *; cofe_subst. Qed. -Lemma res_map_id {Σ A} (r : res Σ A) : res_map cid r ≡ r. -Proof. - constructor; simpl; [|done|]. - * rewrite -{2}(map_fmap_id (wld r)); apply map_fmap_setoid_ext=> i y ? /=. - rewrite -{2}(agree_map_id y); apply agree_map_ext=> y' /=. - by rewrite later_map_id. - * rewrite -{2}(icmra_map_id Σ (gst r)); apply icmra_map_ext=> m /=. - by rewrite later_map_id. -Qed. -Lemma res_map_compose {Σ A B C} (f : A -n> B) (g : B -n> C) (r : res Σ A) : - res_map (g ◎ f) r ≡ res_map g (res_map f r). -Proof. - constructor; simpl; [|done|]. - * rewrite -map_fmap_compose; apply map_fmap_setoid_ext=> i y _ /=. - rewrite -agree_map_compose; apply agree_map_ext=> y' /=. - by rewrite later_map_compose. - * rewrite -icmra_map_compose; apply icmra_map_ext=> m /=. - by rewrite later_map_compose. -Qed. -Definition resRA_map {Σ A B} (f : A -n> B) : resRA Σ A -n> resRA Σ B := - CofeMor (res_map f : resRA Σ A → resRA Σ B). -Instance res_map_cmra_monotone {Σ} {A B : cofeT} (f : A -n> B) : - CMRAMonotone (@res_map Σ _ _ f). -Proof. - split. - * by intros n r1 r2; rewrite !res_includedN; - intros (?&?&?); split_ands'; simpl; try apply includedN_preserving. - * by intros n r (?&?&?); split_ands'; simpl; try apply validN_preserving. -Qed. -Instance resRA_map_contractive {Σ A B} : Contractive (@resRA_map Σ A B). -Proof. - intros n f g ? r; constructor; simpl; [|done|]. - * by apply (mapRA_map_ne _ (agreeRA_map (laterC_map f)) - (agreeRA_map (laterC_map g))), agreeRA_map_ne, laterC_map_contractive. - * by apply icmra_map_ne, laterC_map_contractive. -Qed. - -(* Functor for the solution *) Module iProp. Definition F (Σ : iParam) (A B : cofeT) : cofeT := uPredC (resRA Σ A). Definition map {Σ : iParam} {A1 A2 B1 B2 : cofeT} @@ -239,3 +29,8 @@ Proof. apply solution_unfold_fold. Qed. Lemma iProp_unfold_fold {Σ} (P : iPreProp Σ) : iProp_unfold (iProp_fold P) ≡ P. Proof. apply solution_fold_unfold. Qed. Bind Scope uPred_scope with iProp. + +Instance iProp_fold_inj n Σ : Injective (dist n) (dist n) (@iProp_fold Σ). +Proof. by intros X Y H; rewrite -(iProp_unfold_fold X) H iProp_unfold_fold. Qed. +Instance iProp_unfold_inj n Σ : Injective (dist n) (dist n) (@iProp_unfold Σ). +Proof. by intros X Y H; rewrite -(iProp_fold_unfold X) H iProp_fold_unfold. Qed. diff --git a/iris/parameter.v b/iris/parameter.v new file mode 100644 index 0000000000000000000000000000000000000000..01bc287d0cd0f4a2f20ccedd67cd20b1b7ab620c --- /dev/null +++ b/iris/parameter.v @@ -0,0 +1,21 @@ +Require Export modures.cmra. + +Record iParam := IParam { + istate : Type; + icmra : cofeT → cmraT; + icmra_empty A : Empty (icmra A); + icmra_empty_spec A : RAIdentity (icmra A); + icmra_map {A B} (f : A -n> B) : icmra A -n> icmra B; + icmra_map_ne {A B} n : Proper (dist n ==> dist n) (@icmra_map A B); + icmra_map_id {A : cofeT} (x : icmra A) : icmra_map cid x ≡ x; + icmra_map_compose {A B C} (f : A -n> B) (g : B -n> C) x : + icmra_map (g ◎ f) x ≡ icmra_map g (icmra_map f x); + icmra_map_mono {A B} (f : A -n> B) : CMRAMonotone (icmra_map f) +}. +Existing Instances icmra_empty icmra_empty_spec icmra_map_ne icmra_map_mono. + +Lemma icmra_map_ext (Σ : iParam) {A B} (f g : A -n> B) m : + (∀ x, f x ≡ g x) → icmra_map Σ f m ≡ icmra_map Σ g m. +Proof. + by intros ?; apply equiv_dist=> n; apply icmra_map_ne=> ?; apply equiv_dist. +Qed. \ No newline at end of file diff --git a/iris/resources.v b/iris/resources.v new file mode 100644 index 0000000000000000000000000000000000000000..42758006b837b060e839d5c0da5c9e35fc90cfd4 --- /dev/null +++ b/iris/resources.v @@ -0,0 +1,210 @@ +Require Export modures.fin_maps modures.agree modures.excl iris.parameter. + +Record res (Σ : iParam) (A : cofeT) := Res { + wld : mapRA positive (agreeRA (laterC A)); + pst : exclRA (leibnizC (istate Σ)); + gst : icmra Σ (laterC A); +}. +Add Printing Constructor res. +Arguments Res {_ _} _ _ _. +Arguments wld {_ _} _. +Arguments pst {_ _} _. +Arguments gst {_ _} _. +Instance: Params (@Res) 2. +Instance: Params (@wld) 2. +Instance: Params (@pst) 2. +Instance: Params (@gst) 2. + +Section res. +Context {Σ : iParam} {A : cofeT}. +Implicit Types r : res Σ A. + +Inductive res_equiv' (r1 r2 : res Σ A) := Res_equiv : + wld r1 ≡ wld r2 → pst r1 ≡ pst r2 → gst r1 ≡ gst r2 → res_equiv' r1 r2. +Instance res_equiv : Equiv (res Σ A) := res_equiv'. +Inductive res_dist' (n : nat) (r1 r2 : res Σ A) := Res_dist : + wld r1 ={n}= wld r2 → pst r1 ={n}= pst r2 → gst r1 ={n}= gst r2 → + res_dist' n r1 r2. +Instance res_dist : Dist (res Σ A) := res_dist'. +Global Instance Res_ne n : + Proper (dist n ==> dist n ==> dist n ==> dist n) (@Res Σ A). +Proof. done. Qed. +Global Instance Res_proper : Proper ((≡) ==> (≡) ==> (≡) ==> (≡)) (@Res Σ A). +Proof. done. Qed. +Global Instance wld_ne n : Proper (dist n ==> dist n) (@wld Σ A). +Proof. by destruct 1. Qed. +Global Instance wld_proper : Proper ((≡) ==> (≡)) (@wld Σ A). +Proof. by destruct 1. Qed. +Global Instance pst_ne n : Proper (dist n ==> dist n) (@pst Σ A). +Proof. by destruct 1. Qed. +Global Instance pst_ne' n : Proper (dist (S n) ==> (≡)) (@pst Σ A). +Proof. + intros σ σ' [???]; apply (timeless _), dist_le with (S n); auto with lia. +Qed. +Global Instance pst_proper : Proper ((≡) ==> (≡)) (@pst Σ A). +Proof. by destruct 1. Qed. +Global Instance gst_ne n : Proper (dist n ==> dist n) (@gst Σ A). +Proof. by destruct 1. Qed. +Global Instance gst_proper : Proper ((≡) ==> (≡)) (@gst Σ A). +Proof. by destruct 1. Qed. +Instance res_compl : Compl (res Σ A) := λ c, + Res (compl (chain_map wld c)) + (compl (chain_map pst c)) (compl (chain_map gst c)). +Definition res_cofe_mixin : CofeMixin (res Σ A). +Proof. + split. + * intros w1 w2; split. + + by destruct 1; constructor; apply equiv_dist. + + by intros Hw; constructor; apply equiv_dist=>n; destruct (Hw n). + * intros n; split. + + done. + + by destruct 1; constructor. + + do 2 destruct 1; constructor; etransitivity; eauto. + * by destruct 1; constructor; apply dist_S. + * done. + * intros c n; constructor. + + apply (conv_compl (chain_map wld c) n). + + apply (conv_compl (chain_map pst c) n). + + apply (conv_compl (chain_map gst c) n). +Qed. +Canonical Structure resC : cofeT := CofeT res_cofe_mixin. +Global Instance res_timeless r : + Timeless (wld r) → Timeless (gst r) → Timeless r. +Proof. by destruct 3; constructor; try apply (timeless _). Qed. + +Instance res_op : Op (res Σ A) := λ r1 r2, + Res (wld r1 ⋅ wld r2) (pst r1 ⋅ pst r2) (gst r1 ⋅ gst r2). +Global Instance res_empty : Empty (res Σ A) := Res ∅ ∅ ∅. +Instance res_unit : Unit (res Σ A) := λ r, + Res (unit (wld r)) (unit (pst r)) (unit (gst r)). +Instance res_valid : Valid (res Σ A) := λ r, ✓ (wld r) ∧ ✓ (pst r) ∧ ✓ (gst r). +Instance res_validN : ValidN (res Σ A) := λ n r, + ✓{n} (wld r) ∧ ✓{n} (pst r) ∧ ✓{n} (gst r). +Instance res_minus : Minus (res Σ A) := λ r1 r2, + Res (wld r1 ⩪ wld r2) (pst r1 ⩪ pst r2) (gst r1 ⩪ gst r2). +Lemma res_included (r1 r2 : res Σ A) : + r1 ≼ r2 ↔ wld r1 ≼ wld r2 ∧ pst r1 ≼ pst r2 ∧ gst r1 ≼ gst r2. +Proof. + split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)]. + intros [r Hr]; split_ands; + [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr. +Qed. +Lemma res_includedN (r1 r2 : res Σ A) n : + r1 ≼{n} r2 ↔ wld r1 ≼{n} wld r2 ∧ pst r1 ≼{n} pst r2 ∧ gst r1 ≼{n} gst r2. +Proof. + split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)]. + intros [r Hr]; split_ands; + [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr. +Qed. +Definition res_cmra_mixin : CMRAMixin (res Σ A). +Proof. + split. + * by intros n x [???] ? [???]; constructor; simpl in *; cofe_subst. + * by intros n [???] ? [???]; constructor; simpl in *; cofe_subst. + * by intros n [???] ? [???] (?&?&?); split_ands'; simpl in *; cofe_subst. + * by intros n [???] ? [???] [???] ? [???]; + constructor; simpl in *; cofe_subst. + * done. + * by intros n ? (?&?&?); split_ands'; apply cmra_valid_S. + * intros r; unfold valid, res_valid, validN, res_validN. + rewrite !cmra_valid_validN; naive_solver. + * intros ???; constructor; simpl; apply (associative _). + * intros ??; constructor; simpl; apply (commutative _). + * intros ?; constructor; simpl; apply ra_unit_l. + * intros ?; constructor; simpl; apply ra_unit_idempotent. + * intros n r1 r2; rewrite !res_includedN. + by intros (?&?&?); split_ands'; apply cmra_unit_preserving. + * intros n r1 r2 (?&?&?); + split_ands'; simpl in *; eapply cmra_valid_op_l; eauto. + * intros n r1 r2; rewrite res_includedN; intros (?&?&?). + by constructor; apply cmra_op_minus. +Qed. +Global Instance res_ra_empty : RAIdentity (res Σ A). +Proof. + by repeat split; simpl; repeat apply ra_empty_valid; rewrite (left_id _ _). +Qed. + +Definition res_cmra_extend_mixin : CMRAExtendMixin (res Σ A). +Proof. + intros n r r1 r2 (?&?&?) [???]; simpl in *. + destruct (cmra_extend_op n (wld r) (wld r1) (wld r2)) as ([w w']&?&?&?), + (cmra_extend_op n (pst r) (pst r1) (pst r2)) as ([σ σ']&?&?&?), + (cmra_extend_op n (gst r) (gst r1) (gst r2)) as ([m m']&?&?&?); auto. + by exists (Res w σ m, Res w' σ' m'). +Qed. +Canonical Structure resRA : cmraT := + CMRAT res_cofe_mixin res_cmra_mixin res_cmra_extend_mixin. + +Definition update_pst (σ : istate Σ) (r : res Σ A) : res Σ A := + Res (wld r) (Excl σ) (gst r). +Definition update_gst (m : icmra Σ (laterC A)) (r : res Σ A) : res Σ A := + Res (wld r) (pst r) m. + +Lemma wld_validN n r : ✓{n} r → ✓{n} (wld r). +Proof. by intros (?&?&?). Qed. +Lemma gst_validN n r : ✓{n} r → ✓{n} (gst r). +Proof. by intros (?&?&?). Qed. +Lemma Res_op w1 w2 σ1 σ2 m1 m2 : + Res w1 σ1 m1 ⋅ Res w2 σ2 m2 = Res (w1 ⋅ w2) (σ1 ⋅ σ2) (m1 ⋅ m2). +Proof. done. Qed. +Lemma Res_unit w σ m : unit (Res w σ m) = Res (unit w) (unit σ) (unit m). +Proof. done. Qed. +Lemma lookup_wld_op_l n r1 r2 i P : + ✓{n} (r1⋅r2) → wld r1 !! i ={n}= Some P → (wld r1 ⋅ wld r2) !! i ={n}= Some P. +Proof. + move=>/wld_validN /(_ i) Hval Hi1P; move: Hi1P Hval; rewrite lookup_op. + destruct (wld r2 !! i) as [P'|] eqn:Hi; rewrite !Hi ?(right_id _ _) // =>-> ?. + by constructor; rewrite (agree_op_inv P P') // agree_idempotent. +Qed. +Lemma lookup_wld_op_r n r1 r2 i P : + ✓{n} (r1⋅r2) → wld r2 !! i ={n}= Some P → (wld r1 ⋅ wld r2) !! i ={n}= Some P. +Proof. + rewrite (commutative _ r1) (commutative _ (wld r1)); apply lookup_wld_op_l. +Qed. +End res. +Arguments resRA : clear implicits. + +Definition res_map {Σ A B} (f : A -n> B) (r : res Σ A) : res Σ B := + Res (agree_map (later_map f) <$> (wld r)) + (pst r) + (icmra_map Σ (laterC_map f) (gst r)). +Instance res_map_ne Σ (A B : cofeT) (f : A -n> B) : + (∀ n, Proper (dist n ==> dist n) f) → + ∀ n, Proper (dist n ==> dist n) (@res_map Σ _ _ f). +Proof. by intros Hf n [] ? [???]; constructor; simpl in *; cofe_subst. Qed. +Lemma res_map_id {Σ A} (r : res Σ A) : res_map cid r ≡ r. +Proof. + constructor; simpl; [|done|]. + * rewrite -{2}(map_fmap_id (wld r)); apply map_fmap_setoid_ext=> i y ? /=. + rewrite -{2}(agree_map_id y); apply agree_map_ext=> y' /=. + by rewrite later_map_id. + * rewrite -{2}(icmra_map_id Σ (gst r)); apply icmra_map_ext=> m /=. + by rewrite later_map_id. +Qed. +Lemma res_map_compose {Σ A B C} (f : A -n> B) (g : B -n> C) (r : res Σ A) : + res_map (g ◎ f) r ≡ res_map g (res_map f r). +Proof. + constructor; simpl; [|done|]. + * rewrite -map_fmap_compose; apply map_fmap_setoid_ext=> i y _ /=. + rewrite -agree_map_compose; apply agree_map_ext=> y' /=. + by rewrite later_map_compose. + * rewrite -icmra_map_compose; apply icmra_map_ext=> m /=. + by rewrite later_map_compose. +Qed. +Definition resRA_map {Σ A B} (f : A -n> B) : resRA Σ A -n> resRA Σ B := + CofeMor (res_map f : resRA Σ A → resRA Σ B). +Instance res_map_cmra_monotone {Σ} {A B : cofeT} (f : A -n> B) : + CMRAMonotone (@res_map Σ _ _ f). +Proof. + split. + * by intros n r1 r2; rewrite !res_includedN; + intros (?&?&?); split_ands'; simpl; try apply includedN_preserving. + * by intros n r (?&?&?); split_ands'; simpl; try apply validN_preserving. +Qed. +Instance resRA_map_contractive {Σ A B} : Contractive (@resRA_map Σ A B). +Proof. + intros n f g ? r; constructor; simpl; [|done|]. + * by apply (mapRA_map_ne _ (agreeRA_map (laterC_map f)) + (agreeRA_map (laterC_map g))), agreeRA_map_ne, laterC_map_contractive. + * by apply icmra_map_ne, laterC_map_contractive. +Qed.