diff --git a/docs/algebra.tex b/docs/algebra.tex index 3b726eccd7ace4a78ee8925ade3f3f3980ded5ee..7bfc5d4d6615abdc10396c13d08af2fc9748b88b 100644 --- a/docs/algebra.tex +++ b/docs/algebra.tex @@ -3,7 +3,7 @@ \subsection{COFE} \begin{defn}[Chain] - Given some set $T$ and an indexed family $({\nequiv{n}} \subseteq T \times T)_{n \in \mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N} \to T$ such that $\All n, m. n < m \Ra c (m) \nequiv{n} c (n+1)$. + Given some set $T$ and an indexed family $({\nequiv{n}} \subseteq T \times T)_{n \in \mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N} \to T$ such that $\All n, m. n \leq m \Ra c (m) \nequiv{n} c (n)$. \end{defn} \begin{defn}