Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
834c66e0
Commit
834c66e0
authored
Sep 30, 2016
by
Robbert Krebbers
Browse files
Extensionality (for Leibniz equality) of big ops.
parent
c3c31e88
Changes
2
Hide whitespace changes
Inline
Side-by-side
algebra/cmra_big_op.v
View file @
834c66e0
...
...
@@ -138,6 +138,10 @@ Section list.
(
∀
k
y
,
l
!!
k
=
Some
y
→
f
k
y
≼
g
k
y
)
→
([
⋅
list
]
k
↦
y
∈
l
,
f
k
y
)
≼
[
⋅
list
]
k
↦
y
∈
l
,
g
k
y
.
Proof
.
apply
big_opL_forall
;
apply
_
.
Qed
.
Lemma
big_opL_ext
f
g
l
:
(
∀
k
y
,
l
!!
k
=
Some
y
→
f
k
y
=
g
k
y
)
→
([
⋅
list
]
k
↦
y
∈
l
,
f
k
y
)
=
[
⋅
list
]
k
↦
y
∈
l
,
g
k
y
.
Proof
.
apply
big_opL_forall
;
apply
_
.
Qed
.
Lemma
big_opL_proper
f
g
l
:
(
∀
k
y
,
l
!!
k
=
Some
y
→
f
k
y
≡
g
k
y
)
→
([
⋅
list
]
k
↦
y
∈
l
,
f
k
y
)
≡
([
⋅
list
]
k
↦
y
∈
l
,
g
k
y
).
...
...
@@ -207,6 +211,10 @@ Section gmap.
-
by
apply
big_op_contains
,
fmap_contains
,
map_to_list_contains
.
-
apply
big_opM_forall
;
apply
_
||
auto
.
Qed
.
Lemma
big_opM_ext
f
g
m
:
(
∀
k
x
,
m
!!
k
=
Some
x
→
f
k
x
=
g
k
x
)
→
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
=
([
⋅
map
]
k
↦
x
∈
m
,
g
k
x
).
Proof
.
apply
big_opM_forall
;
apply
_
.
Qed
.
Lemma
big_opM_proper
f
g
m
:
(
∀
k
x
,
m
!!
k
=
Some
x
→
f
k
x
≡
g
k
x
)
→
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
≡
([
⋅
map
]
k
↦
x
∈
m
,
g
k
x
).
...
...
@@ -314,14 +322,14 @@ Section gset.
-
by
apply
big_op_contains
,
fmap_contains
,
elements_contains
.
-
apply
big_opS_forall
;
apply
_
||
auto
.
Qed
.
Lemma
big_opS_
proper
f
g
X
Y
:
X
≡
Y
→
(
∀
x
,
x
∈
X
→
x
∈
Y
→
f
x
≡
g
x
)
→
([
⋅
set
]
x
∈
X
,
f
x
)
≡
([
⋅
set
]
x
∈
Y
,
g
x
).
Proof
.
intros
HX
Hf
.
trans
([
⋅
set
]
x
∈
Y
,
f
x
).
-
apply
big_op_permutation
.
by
rewrite
HX
.
-
apply
big_opS_forall
;
try
apply
_
||
set_solver
.
Qed
.
Lemma
big_opS_
ext
f
g
X
:
(
∀
x
,
x
∈
X
→
f
x
=
g
x
)
→
([
⋅
set
]
x
∈
X
,
f
x
)
=
([
⋅
set
]
x
∈
X
,
g
x
).
Proof
.
apply
big_opS_forall
;
apply
_
.
Qed
.
Lemma
big_opS_proper
f
g
X
:
(
∀
x
,
x
∈
X
→
f
x
≡
g
x
)
→
([
⋅
set
]
x
∈
X
,
f
x
)
≡
([
⋅
set
]
x
∈
X
,
g
x
)
.
Proof
.
apply
big_opS_forall
;
apply
_
.
Qed
.
Lemma
big_opS_ne
X
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
big_opS
(
M
:
=
M
)
X
).
...
...
@@ -345,7 +353,7 @@ Section gset.
≡
(
f
x
b
⋅
[
⋅
set
]
y
∈
X
,
f
y
(
h
y
)).
Proof
.
intros
.
rewrite
big_opS_insert
//
fn_lookup_insert
.
apply
cmra_op_proper'
,
big_opS_proper
;
auto
=>
y
?
?.
apply
cmra_op_proper'
,
big_opS_proper
;
auto
=>
y
?.
by
rewrite
fn_lookup_insert_ne
;
last
set_solver
.
Qed
.
Lemma
big_opS_fn_insert'
f
X
x
P
:
...
...
algebra/upred_big_op.v
View file @
834c66e0
...
...
@@ -125,7 +125,6 @@ Section list.
(
∀
k
y
,
l
!!
k
=
Some
y
→
Φ
k
y
⊢
Ψ
k
y
)
→
([
★
list
]
k
↦
y
∈
l
,
Φ
k
y
)
⊢
[
★
list
]
k
↦
y
∈
l
,
Ψ
k
y
.
Proof
.
apply
big_opL_forall
;
apply
_
.
Qed
.
Lemma
big_sepL_proper
Φ
Ψ
l
:
(
∀
k
y
,
l
!!
k
=
Some
y
→
Φ
k
y
⊣
⊢
Ψ
k
y
)
→
([
★
list
]
k
↦
y
∈
l
,
Φ
k
y
)
⊣
⊢
([
★
list
]
k
↦
y
∈
l
,
Ψ
k
y
).
...
...
@@ -219,7 +218,6 @@ Section gmap.
by
apply
fmap_contains
,
map_to_list_contains
.
-
apply
big_opM_forall
;
apply
_
||
auto
.
Qed
.
Lemma
big_sepM_proper
Φ
Ψ
m
:
(
∀
k
x
,
m
!!
k
=
Some
x
→
Φ
k
x
⊣
⊢
Ψ
k
x
)
→
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
Ψ
k
x
).
...
...
@@ -344,16 +342,15 @@ Section gset.
by
apply
fmap_contains
,
elements_contains
.
-
apply
big_opS_forall
;
apply
_
||
auto
.
Qed
.
Lemma
big_sepS_proper
Φ
Ψ
X
:
(
∀
x
,
x
∈
X
→
Φ
x
⊣
⊢
Ψ
x
)
→
([
★
set
]
x
∈
X
,
Φ
x
)
⊣
⊢
([
★
set
]
x
∈
X
,
Ψ
x
).
Proof
.
apply
:
big_opS_proper
.
Qed
.
Lemma
big_sepS_mono'
X
:
Global
Instance
big_sepS_mono'
X
:
Proper
(
pointwise_relation
_
(
⊢
)
==>
(
⊢
))
(
big_opS
(
M
:
=
uPredUR
M
)
X
).
Proof
.
intros
f
g
Hf
.
apply
big_opS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_sepS_proper
Φ
Ψ
X
Y
:
X
≡
Y
→
(
∀
x
,
x
∈
X
→
x
∈
Y
→
Φ
x
⊣
⊢
Ψ
x
)
→
([
★
set
]
x
∈
X
,
Φ
x
)
⊣
⊢
([
★
set
]
x
∈
Y
,
Ψ
x
).
Proof
.
apply
:
big_opS_proper
.
Qed
.
Lemma
big_sepS_empty
Φ
:
([
★
set
]
x
∈
∅
,
Φ
x
)
⊣
⊢
True
.
Proof
.
by
rewrite
big_opS_empty
.
Qed
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment