Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
834b2046
Commit
834b2046
authored
Jul 29, 2016
by
Robbert Krebbers
Browse files
Conversion from coPset to gset positive.
parent
daba18d5
Changes
1
Hide whitespace changes
Inline
Side-by-side
prelude/coPset.v
View file @
834b2046
...
...
@@ -315,9 +315,22 @@ Proof.
apply
coPset_finite_spec
;
destruct
X
as
[[
t
?]]
;
apply
of_Pset_raw_finite
.
Qed
.
(** * Conversion from gsets of positives *)
(** * Conversion to and from gsets of positives *)
Lemma
to_gset_wf
(
m
:
Pmap
())
:
gmap_wf
(
K
:
=
positive
)
m
.
Proof
.
done
.
Qed
.
Definition
to_gset
(
X
:
coPset
)
:
gset
positive
:
=
let
'
Mapset
m
:
=
to_Pset
X
in
Mapset
(
GMap
m
(
bool_decide_pack
_
(
to_gset_wf
m
))).
Definition
of_gset
(
X
:
gset
positive
)
:
coPset
:
=
let
'
Mapset
(
GMap
(
PMap
t
Ht
)
_
)
:
=
X
in
of_Pset_raw
t
↾
of_Pset_wf
_
Ht
.
Lemma
elem_of_to_gset
X
i
:
set_finite
X
→
i
∈
to_gset
X
↔
i
∈
X
.
Proof
.
intros
?.
rewrite
<-
elem_of_to_Pset
by
done
.
unfold
to_gset
.
by
destruct
(
to_Pset
X
).
Qed
.
Lemma
elem_of_of_gset
X
i
:
i
∈
of_gset
X
↔
i
∈
X
.
Proof
.
destruct
X
as
[[[
t
?]]]
;
apply
elem_of_of_Pset_raw
.
Qed
.
Lemma
of_gset_finite
X
:
set_finite
(
of_gset
X
).
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment