Commit 5c639877 by Ralf Jung

### note that forall_2 would be derivable in a classical meta-logic

parent 8389920e
 ... ... @@ -58,7 +58,7 @@ Section bi_mixin. bi_mixin_entails_po : PreOrder bi_entails; bi_mixin_equiv_spec P Q : equiv P Q ↔ (P ⊢ Q) ∧ (Q ⊢ P); (* Non-expansiveness *) (** Non-expansiveness *) bi_mixin_pure_ne n : Proper (iff ==> dist n) bi_pure; bi_mixin_and_ne : NonExpansive2 bi_and; bi_mixin_or_ne : NonExpansive2 bi_or; ... ... @@ -71,9 +71,11 @@ Section bi_mixin. bi_mixin_wand_ne : NonExpansive2 bi_wand; bi_mixin_persistently_ne : NonExpansive bi_persistently; (* Higher-order logic *) (** Higher-order logic *) bi_mixin_pure_intro P (φ : Prop) : φ → P ⊢ ⌜ φ ⌝; bi_mixin_pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌝ ⊢ P; (* This is actually derivable if we assume excluded middle in Coq, via [(∀ a, φ a) ∨ (∃ a, ¬φ a)]. *) bi_mixin_pure_forall_2 {A} (φ : A → Prop) : (∀ a, ⌜ φ a ⌝) ⊢ ⌜ ∀ a, φ a ⌝; bi_mixin_and_elim_l P Q : P ∧ Q ⊢ P; ... ... @@ -93,7 +95,7 @@ Section bi_mixin. bi_mixin_exist_intro {A} {Ψ : A → PROP} a : Ψ a ⊢ ∃ a, Ψ a; bi_mixin_exist_elim {A} (Φ : A → PROP) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q; (* BI connectives *) (** BI connectives *) bi_mixin_sep_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q'; bi_mixin_emp_sep_1 P : P ⊢ emp ∗ P; bi_mixin_emp_sep_2 P : emp ∗ P ⊢ P; ... ... @@ -102,7 +104,7 @@ Section bi_mixin. bi_mixin_wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R; bi_mixin_wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R; (* Persistently *) (** Persistently *) (* In the ordered RA model: Holds without further assumptions. *) bi_mixin_persistently_mono P Q : (P ⊢ Q) → P ⊢ Q; (* In the ordered RA model: `core` is idempotent *) ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment