Commit 5726049c authored by Robbert Krebbers's avatar Robbert Krebbers

Theorems about big_ops for uPred.

Also, specialize the big ops to gmap and gset because that is all that
we are using. For the big ops on sets this also means we can use Leibniz
equality on sets.
parent 9411195d
From algebra Require Export upred.
From prelude Require Import fin_maps fin_collections.
From prelude Require Import gmap fin_collections.
(** * Big ops over lists *)
(* These are the basic building blocks for other big ops *)
......@@ -14,14 +14,16 @@ Notation "'Π★' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope.
(** * Other big ops *)
(** We use a type class to obtain overloaded notations *)
Definition uPred_big_sepM {M} `{FinMapToList K A MA}
(m : MA) (P : K A uPred M) : uPred M :=
Definition uPred_big_sepM {M} `{Countable K} {A}
(m : gmap K A) (P : K A uPred M) : uPred M :=
uPred_big_sep (curry P <$> map_to_list m).
Instance: Params (@uPred_big_sepM) 6.
Notation "'Π★{map' m } P" := (uPred_big_sepM m P)
(at level 20, m at level 10, format "Π★{map m } P") : uPred_scope.
Definition uPred_big_sepS {M} `{Elements A C}
(X : C) (P : A uPred M) : uPred M := uPred_big_sep (P <$> elements X).
Definition uPred_big_sepS {M} `{Countable A}
(X : gset A) (P : A uPred M) : uPred M := uPred_big_sep (P <$> elements X).
Instance: Params (@uPred_big_sepS) 5.
Notation "'Π★{set' X } P" := (uPred_big_sepS X P)
(at level 20, X at level 10, format "Π★{set X } P") : uPred_scope.
......@@ -32,7 +34,6 @@ Arguments always_stableL {_} _ {_}.
Section big_op.
Context {M : cmraT}.
Implicit Types P Q : uPred M.
Implicit Types Ps Qs : list (uPred M).
Implicit Types A : Type.
......@@ -41,6 +42,19 @@ Global Instance big_and_proper : Proper ((≡) ==> (≡)) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_proper : Proper (() ==> ()) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_and_ne n :
Proper (Forall2 (dist n) ==> dist n) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_ne n :
Proper (Forall2 (dist n) ==> dist n) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_and_mono' : Proper (Forall2 () ==> ()) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_mono' : Proper (Forall2 () ==> ()) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_and_perm : Proper (() ==> ()) (@uPred_big_and M).
Proof.
induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
......@@ -55,34 +69,121 @@ Proof.
- by rewrite !assoc (comm _ P).
- etransitivity; eauto.
Qed.
Lemma big_and_app Ps Qs : (Π (Ps ++ Qs))%I (Π Ps Π Qs)%I.
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
Lemma big_sep_app Ps Qs : (Π★ (Ps ++ Qs))%I (Π★ Ps Π★ Qs)%I.
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
Lemma big_and_contains Ps Qs : Qs `contains` Ps (Π Ps)%I (Π Qs)%I.
Proof.
intros [Ps' ->]%contains_Permutation. by rewrite big_and_app uPred.and_elim_l.
Qed.
Lemma big_sep_contains Ps Qs : Qs `contains` Ps (Π★ Ps)%I (Π★ Qs)%I.
Proof.
intros [Ps' ->]%contains_Permutation. by rewrite big_sep_app uPred.sep_elim_l.
Qed.
Lemma big_sep_and Ps : (Π★ Ps) (Π Ps).
Proof. by induction Ps as [|P Ps IH]; simpl; auto with I. Qed.
Lemma big_and_elem_of Ps P : P Ps (Π Ps) P.
Proof. induction 1; simpl; auto with I. Qed.
Lemma big_sep_elem_of Ps P : P Ps (Π★ Ps) P.
Proof. induction 1; simpl; auto with I. Qed.
(* Big ops over finite maps *)
Section fin_map.
Context `{FinMap K Ma} {A} (P : K A uPred M).
Section gmap.
Context `{Countable K} {A : Type}.
Implicit Types m : gmap K A.
Implicit Types P : K A uPred M.
Lemma big_sepM_empty : (Π★{map } P)%I True%I.
Proof. by rewrite /uPred_big_sep /uPred_big_sepM map_to_list_empty. Qed.
Lemma big_sepM_insert (m : Ma A) i x :
m !! i = None (Π★{map <[i:=x]> m} P)%I (P i x Π★{map m} P)%I.
Lemma big_sepM_mono P Q m1 m2 :
m2 m1 ( x k, m2 !! k = Some x P k x Q k x)
(Π★{map m1} P) (Π★{map m2} Q).
Proof.
intros ?; by rewrite /uPred_big_sep /uPred_big_sepM map_to_list_insert.
intros HX HP. transitivity (Π★{map m2} P)%I.
- by apply big_sep_contains, fmap_contains, map_to_list_contains.
- apply big_sep_mono', Forall2_fmap, Forall2_Forall.
apply Forall_forall=> -[i x] ? /=. by apply HP, elem_of_map_to_list.
Qed.
Lemma big_sepM_singleton i x : (Π★{map {[i := x]}} P)%I (P i x)%I.
Global Instance big_sepM_ne m n :
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
(uPred_big_sepM (M:=M) m).
Proof.
intros P1 P2 HP. apply big_sep_ne, Forall2_fmap.
apply Forall2_Forall, Forall_true=> -[i x]; apply HP.
Qed.
Global Instance big_sepM_proper m :
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
(uPred_big_sepM (M:=M) m).
Proof.
intros P1 P2 HP; apply equiv_dist=> n.
apply big_sepM_ne=> k x; apply equiv_dist, HP.
Qed.
Global Instance big_sepM_mono' m :
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
(uPred_big_sepM (M:=M) m).
Proof. intros P1 P2 HP. apply big_sepM_mono; intros; [done|apply HP]. Qed.
Lemma big_sepM_empty P : (Π★{map } P)%I True%I.
Proof. by rewrite /uPred_big_sepM map_to_list_empty. Qed.
Lemma big_sepM_insert P (m : gmap K A) i x :
m !! i = None (Π★{map <[i:=x]> m} P)%I (P i x Π★{map m} P)%I.
Proof. intros ?; by rewrite /uPred_big_sepM map_to_list_insert. Qed.
Lemma big_sepM_singleton P i x : (Π★{map {[i := x]}} P)%I (P i x)%I.
Proof.
rewrite -insert_empty big_sepM_insert/=; last auto using lookup_empty.
by rewrite big_sepM_empty right_id.
Qed.
End fin_map.
End gmap.
(* Big ops over finite sets *)
Section gset.
Context `{Countable A}.
Implicit Types X : gset A.
Implicit Types P : A uPred M.
Lemma big_sepS_mono P Q X Y :
Y X ( x, x Y P x Q x) (Π★{set X} P) (Π★{set Y} Q).
Proof.
intros HX HP. transitivity (Π★{set Y} P)%I.
- by apply big_sep_contains, fmap_contains, elements_contains.
- apply big_sep_mono', Forall2_fmap, Forall2_Forall.
apply Forall_forall=> x ? /=. by apply HP, elem_of_elements.
Qed.
Lemma big_sepS_ne X n :
Proper (pointwise_relation _ (dist n) ==> dist n) (uPred_big_sepS (M:=M) X).
Proof.
intros P1 P2 HP. apply big_sep_ne, Forall2_fmap.
apply Forall2_Forall, Forall_true=> x; apply HP.
Qed.
Lemma big_sepS_proper X :
Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
Proof.
intros P1 P2 HP; apply equiv_dist=> n.
apply big_sepS_ne=> x; apply equiv_dist, HP.
Qed.
Lemma big_sepS_mono' X :
Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
Proof. intros P1 P2 HP. apply big_sepS_mono; naive_solver. Qed.
Lemma big_sepS_empty P : (Π★{set } P)%I True%I.
Proof. by rewrite /uPred_big_sepS elements_empty. Qed.
Lemma big_sepS_insert P X x :
x X (Π★{set {[ x ]} X} P)%I (P x Π★{set X} P)%I.
Proof. intros. by rewrite /uPred_big_sepS elements_union_singleton. Qed.
Lemma big_sepS_delete P X x :
x X (Π★{set X} P)%I (P x Π★{set X {[ x ]}} P)%I.
Proof.
intros. rewrite -big_sepS_insert; last solve_elem_of.
by rewrite -union_difference_L; last solve_elem_of.
Qed.
Lemma big_sepS_singleton P x : (Π★{set {[ x ]}} P)%I (P x)%I.
Proof. intros. by rewrite /uPred_big_sepS elements_singleton /= right_id. Qed.
End gset.
(* Always stable *)
Local Notation AS := AlwaysStable.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment