Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Rodolphe Lepigre
Iris
Commits
4a154f08
Commit
4a154f08
authored
Mar 20, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Remove duplicate lemmas for agree.
parent
0b908b36
Changes
3
Hide whitespace changes
Inline
Sidebyside
Showing
3 changed files
with
22 additions
and
37 deletions
+22
37
theories/algebra/agree.v
theories/algebra/agree.v
+18
32
theories/base_logic/lib/gen_heap.v
theories/base_logic/lib/gen_heap.v
+1
1
theories/tests/one_shot.v
theories/tests/one_shot.v
+3
4
No files found.
theories/algebra/agree.v
View file @
4a154f08
...
...
@@ 292,6 +292,7 @@ Proof.

simpl
.
destruct
Ha
as
[>
Ha
]
;
set_solver
.

simpl
.
set_solver
+.
Qed
.
Lemma
agree_op_invN
n
(
x1
x2
:
agree
A
)
:
✓
{
n
}
(
x1
⋅
x2
)
→
x1
≡
{
n
}
≡
x2
.
Proof
.
intros
Hxy
.
split
;
apply
agree_op_inv_inclN
;
first
done
.
by
rewrite
comm
.
...
...
@@ 325,13 +326,7 @@ Proof. rewrite /CMRATotal; eauto. Qed.
Global
Instance
agree_persistent
(
x
:
agree
A
)
:
Persistent
x
.
Proof
.
by
constructor
.
Qed
.
Lemma
agree_op_inv
(
x1
x2
:
agree
A
)
:
✓
(
x1
⋅
x2
)
→
x1
≡
x2
.
Proof
.
intros
?.
apply
equiv_dist
=>
n
.
by
apply
agree_op_invN
,
cmra_valid_validN
.
Qed
.
Global
Instance
agree_discrete
:
Discrete
A
→
CMRADiscrete
agreeR
.
Global
Instance
agree_discrete
:
Discrete
A
→
CMRADiscrete
agreeR
.
Proof
.
intros
HD
.
split
.

intros
x
y
Hxy
n
.
eapply
list_setequiv_subrel
;
last
exact
Hxy
.
clear

HD
.
...
...
@@ 354,22 +349,18 @@ Global Instance to_agree_proper : Proper ((≡) ==> (≡)) to_agree := ne_proper
Global
Instance
to_agree_injN
n
:
Inj
(
dist
n
)
(
dist
n
)
(
to_agree
).
Proof
.
intros
a
b
[
Hxy
%
list_setincl_singleton_rev
_
].
done
.
Qed
.
Global
Instance
to_agree_inj
:
Inj
(
≡
)
(
≡
)
(
to_agree
).
Proof
.
intros
a
b
?.
apply
equiv_dist
=>
n
.
apply
to_agree_injN
.
by
apply
equiv_dist
.
Qed
.
Proof
.
intros
a
b
?.
apply
equiv_dist
=>
n
.
by
apply
to_agree_injN
,
equiv_dist
.
Qed
.
Lemma
to_agree_uninjN
n
(
x
:
agree
A
)
:
✓
{
n
}
x
→
∃
y
:
A
,
to_agree
y
≡
{
n
}
≡
x
.
Proof
.
intros
Hl
.
exists
(
agree_car
x
).
rewrite
/
dist
/
agree_dist
/=.
split
.
intros
Hl
.
exists
(
agree_car
x
).
rewrite
/
dist
/
agree_dist
/=.
split
.

apply
:
list_setincl_singleton_in
.
set_solver
+.

apply
(
list_agrees_iff_setincl
_
)
;
first
set_solver
+.
done
.
Qed
.
Lemma
to_agree_uninj
(
x
:
agree
A
)
:
✓
x
→
∃
y
:
A
,
to_agree
y
≡
x
.
Proof
.
intros
Hl
.
exists
(
agree_car
x
).
rewrite
/
dist
/
agree_dist
/=.
split
.
intros
Hl
.
exists
(
agree_car
x
).
rewrite
/
dist
/
agree_dist
/=.
split
.

apply
:
list_setincl_singleton_in
.
set_solver
+.

apply
(
list_agrees_iff_setincl
_
)
;
first
set_solver
+.
eapply
list_agrees_subrel
;
last
exact
:
Hl
;
[
apply
_
..].
...
...
@@ 383,22 +374,7 @@ Proof.
(* TODO: This could become a generic lemma about list_setincl. *)
destruct
(
Hincl
a
)
as
(?
&
>%
elem_of_list_singleton
&
?)
;
first
set_solver
+.
done
.

intros
Hab
.
rewrite
Hab
.
eexists
.
symmetry
.
eapply
agree_idemp
.
Qed
.
Lemma
to_agree_comp_validN
n
(
a
b
:
A
)
:
✓
{
n
}
(
to_agree
a
⋅
to_agree
b
)
↔
a
≡
{
n
}
≡
b
.
Proof
.
split
.

(* TODO: can this be derived from other stuff? Otherwise, should probably
become sth. generic about list_agrees. *)
intros
Hv
.
apply
Hv
;
simpl
;
set_solver
.

intros
>.
rewrite
agree_idemp
.
done
.
Qed
.
Lemma
to_agree_comp_valid
(
a
b
:
A
)
:
✓
(
to_agree
a
⋅
to_agree
b
)
↔
a
≡
b
.
Proof
.
rewrite
cmra_valid_validN
equiv_dist
.
by
setoid_rewrite
to_agree_comp_validN
.

by
intros
>.
Qed
.
Global
Instance
agree_cancelable
(
x
:
agree
A
)
:
Cancelable
x
.
...
...
@@ 409,12 +385,22 @@ Proof.
destruct
(
to_agree_uninjN
n
z
)
as
[
z'
EQz
].
{
eapply
(
cmra_validN_op_r
n
x
z
).
by
rewrite

Heq
.
}
assert
(
Hx'y'
:
x'
≡
{
n
}
≡
y'
).
{
apply
to_agree_comp_valid
N
.
by
rewrite
EQx
EQy
.
}
{
apply
(
inj
to_agree
),
agree_op_inv
N
.
by
rewrite
EQx
EQy
.
}
assert
(
Hx'z'
:
x'
≡
{
n
}
≡
z'
).
{
apply
to_agree_comp_valid
N
.
by
rewrite
EQx
EQz

Heq
.
}
{
apply
(
inj
to_agree
),
agree_op_inv
N
.
by
rewrite
EQx
EQz

Heq
.
}
by
rewrite

EQy

EQz

Hx'y'

Hx'z'
.
Qed
.
Lemma
agree_op_inv
(
x1
x2
:
agree
A
)
:
✓
(
x1
⋅
x2
)
→
x1
≡
x2
.
Proof
.
intros
?.
apply
equiv_dist
=>
n
.
by
apply
agree_op_invN
,
cmra_valid_validN
.
Qed
.
Lemma
agree_op_inv'
(
a1
a2
:
A
)
:
✓
(
to_agree
a1
⋅
to_agree
a2
)
→
a1
≡
a2
.
Proof
.
by
intros
?%
agree_op_inv
%(
inj
_
).
Qed
.
Lemma
agree_op_invL'
`
{!
LeibnizEquiv
A
}
(
a1
a2
:
A
)
:
✓
(
to_agree
a1
⋅
to_agree
a2
)
→
a1
=
a2
.
Proof
.
by
intros
?%
agree_op_inv'
%
leibniz_equiv
.
Qed
.
(** Internalized properties *)
Lemma
agree_equivI
{
M
}
a
b
:
to_agree
a
≡
to_agree
b
⊣
⊢
(
a
≡
b
:
uPred
M
).
Proof
.
...
...
theories/base_logic/lib/gen_heap.v
View file @
4a154f08
...
...
@@ 95,7 +95,7 @@ Section gen_heap.
apply
wand_intro_r
.
rewrite
mapsto_eq

own_op

auth_frag_op
own_valid
discrete_valid
.
f_equiv
=>
/
auth_own_valid
/=.
rewrite
op_singleton
singleton_valid
pair_op
.
by
intros
[
_
?%
agree_op_inv
%(
inj
to_agree
)%
leibniz_equiv
].
by
intros
[
_
?%
agree_op_inv
L'
].
Qed
.
Global
Instance
ex_mapsto_fractional
l
:
Fractional
(
λ
q
,
l
↦
{
q
}
)%
I
.
...
...
theories/tests/one_shot.v
View file @
4a154f08
...
...
@@ 75,11 +75,10 @@ Proof.
{
by
wp_match
.
}
wp_match
.
wp_bind
(!
_
)%
E
.
iInv
N
as
">[[Hl Hγ]H]"
"Hclose"
;
last
iDestruct
"H"
as
(
m'
)
"[Hl Hγ]"
.
{
iCombine
"Hγ"
"Hγ'"
as
"Hγ"
.
by
iDestruct
(
own_valid
with
"Hγ
"
)
as
%?.
}
{
by
iDestruct
(
own_valid_2
with
"Hγ Hγ'
"
)
as
%?.
}
wp_load
.
iCombine
"Hγ"
"Hγ'"
as
"Hγ"
.
iDestruct
(
own_valid
with
"Hγ"
)
as
%?%
agree_op_inv
%
to_agree_inj
.
fold_leibniz
.
subst
.
iMod
(
"Hclose"
with
"[Hl]"
)
as
"_"
.
iDestruct
(
own_valid_2
with
"Hγ Hγ'"
)
as
%?%
agree_op_invL'
;
subst
.
iMod
(
"Hclose"
with
"[Hl]"
)
as
"_"
.
{
iNext
;
iRight
;
by
eauto
.
}
iModIntro
.
wp_match
.
iApply
wp_assert
.
wp_op
=>?
;
simplify_eq
/=
;
eauto
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment