Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
48679cc3
Commit
48679cc3
authored
Aug 11, 2016
by
Robbert Krebbers
Browse files
Prove later_exist_1 in the logic.
parent
126aef31
Changes
1
Hide whitespace changes
Inline
Side-by-side
algebra/upred.v
View file @
48679cc3
...
...
@@ -1025,8 +1025,6 @@ Lemma later_or P Q : ▷ (P ∨ Q) ⊣⊢ ▷ P ∨ ▷ Q.
Proof
.
unseal
;
split
=>
-[|
n
]
x
;
simpl
;
tauto
.
Qed
.
Lemma
later_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∀
a
,
Φ
a
)
⊣
⊢
(
∀
a
,
▷
Φ
a
).
Proof
.
unseal
;
by
split
=>
-[|
n
]
x
.
Qed
.
Lemma
later_exist_1
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
∃
a
,
▷
Φ
a
)
⊢
(
▷
∃
a
,
Φ
a
).
Proof
.
unseal
;
by
split
=>
-[|[|
n
]]
x
.
Qed
.
Lemma
later_exist_2
`
{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
(
▷
∃
a
,
Φ
a
)
⊢
∃
a
,
▷
Φ
a
.
Proof
.
unseal
;
split
=>
-[|[|
n
]]
x
;
done
||
by
exists
inhabitant
.
Qed
.
Lemma
later_sep
P
Q
:
▷
(
P
★
Q
)
⊣
⊢
▷
P
★
▷
Q
.
...
...
@@ -1054,11 +1052,13 @@ Lemma later_True : ▷ True ⊣⊢ True.
Proof
.
apply
(
anti_symm
(
⊢
))
;
auto
using
later_intro
.
Qed
.
Lemma
later_impl
P
Q
:
▷
(
P
→
Q
)
⊢
▷
P
→
▷
Q
.
Proof
.
apply
impl_intro_l
;
rewrite
-
later_and
;
eauto
using
impl_elim
.
Qed
.
Lemma
later_exist_1
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
∃
a
,
▷
Φ
a
)
⊢
(
▷
∃
a
,
Φ
a
).
Proof
.
apply
exist_elim
;
eauto
using
exist_intro
.
Qed
.
Lemma
later_exist
`
{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
▷
(
∃
a
,
Φ
a
)
⊣
⊢
(
∃
a
,
▷
Φ
a
).
Proof
.
apply
:
anti_symm
;
eauto
using
later_exist_2
,
later_exist_1
.
Qed
.
Lemma
later_wand
P
Q
:
▷
(
P
-
★
Q
)
⊢
▷
P
-
★
▷
Q
.
Proof
.
apply
wand_intro_r
;
rewrite
-
later_sep
;
eauto
using
wand_elim_l
.
Qed
.
Proof
.
apply
wand_intro_r
;
rewrite
-
later_sep
;
eauto
using
wand_elim_l
.
Qed
.
Lemma
later_iff
P
Q
:
▷
(
P
↔
Q
)
⊢
▷
P
↔
▷
Q
.
Proof
.
by
rewrite
/
uPred_iff
later_and
!
later_impl
.
Qed
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment