Commit 2581dc19 authored by Robbert Krebbers's avatar Robbert Krebbers

Bump stdpp.

parent 581983b4
......@@ -11,5 +11,5 @@ install: [make "install"]
remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris"]
depends: [
"coq" { (>= "8.7.1" & < "8.10~") | (= "dev") }
"coq-stdpp" { (= "dev.2019-02-22.0.45ae06c7") | (= "dev") }
"coq-stdpp" { (= "dev.2019-03-03.0.7b80dd85") | (= "dev") }
]
......@@ -353,7 +353,7 @@ Qed.
Section freshness.
Local Set Default Proof Using "Type*".
Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
Context `{Infinite K}.
Lemma alloc_updateP_strong (Q : gmap K A Prop) (I : gset K) m x :
x ( i, m !! i = None i I Q (<[i:=x]>m)) m ~~>: Q.
Proof.
......
......@@ -163,13 +163,13 @@ Section gset_disj.
Section fresh_updates.
Local Set Default Proof Using "Type*".
Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
Context `{Infinite K}.
Lemma gset_disj_alloc_updateP (Q : gset_disj K Prop) X :
( i, i X Q (GSet ({[i]} X))) GSet X ~~>: Q.
Proof.
intro; eapply gset_disj_alloc_updateP_strong with (λ _, True); eauto.
intros Y ?; exists (fresh Y); eauto using is_fresh.
intros Y ?; exists (fresh Y). split. apply is_fresh. done.
Qed.
Lemma gset_disj_alloc_updateP' X :
GSet X ~~>: λ Y, i, Y = GSet ({[ i ]} X) i X.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment