Commit 1cf19e9c by Ralf Jung

### prove a weaker derived form of recv_strengthen; more "\lam:" notation

parent bf610ff2
 ... ... @@ -747,6 +747,13 @@ Proof. Qed. Lemma wand_diag P : (P -★ P)%I ≡ True%I. Proof. apply (anti_symm _); auto. apply wand_intro_l; by rewrite right_id. Qed. Lemma wand_entails P Q : True ⊑ (P -★ Q) → P ⊑ Q. Proof. intros HPQ. eapply sep_elim_True_r; first exact: HPQ. by rewrite wand_elim_r. Qed. Lemma entails_wand P Q : (P ⊑ Q) → True ⊑ (P -★ Q). Proof. auto using wand_intro_l. Qed. Lemma sep_and P Q : (P ★ Q) ⊑ (P ∧ Q). Proof. auto. Qed. Lemma impl_wand P Q : (P → Q) ⊑ (P -★ Q). ... ...
 ... ... @@ -332,4 +332,11 @@ Proof. rewrite (later_intro (P1 -★ _)%I) -later_sep. apply later_mono. apply wand_intro_l. by rewrite !assoc wand_elim_r wand_elim_r. Qed. Lemma recv_mono l P1 P2 : P1 ⊑ P2 → recv l P1 ⊑ recv l P2. Proof. intros HP%entails_wand. apply wand_entails. rewrite HP. apply recv_strengthen. Qed. End proof.
 ... ... @@ -78,3 +78,11 @@ Notation "'rec:' f x y z := e" := (Rec f x (Lam y (Lam z e%L))) (at level 102, f, x, y, z at level 1, e at level 200) : lang_scope. Notation "'rec:' f x y z := e" := (RecV f x (Lam y (Lam z e%L))) (at level 102, f, x, y, z at level 1, e at level 200) : lang_scope. Notation "λ: x y , e" := (Lam x (Lam y e%L)) (at level 102, x, y at level 1, e at level 200) : lang_scope. Notation "λ: x y , e" := (LamV x (Lam y e%L)) (at level 102, x, y at level 1, e at level 200) : lang_scope. Notation "λ: x y z , e" := (Lam x (LamV y (LamV z e%L))) (at level 102, x, y, z at level 1, e at level 200) : lang_scope. Notation "λ: x y z , e" := (LamV x (LamV y (LamV z e%L))) (at level 102, x, y, z at level 1, e at level 200) : lang_scope.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!