Commit 10a2b0f3 authored by Robbert Krebbers's avatar Robbert Krebbers

Merge branch 'no_star_specpat'

parents f234569b 6a3c7402
......@@ -251,7 +251,6 @@ _specification patterns_ to express splitting of hypotheses:
`P`, as well the remaining goal.
- `[%]` : This pattern can be used when eliminating `P -★ Q` when `P` is pure.
It will generate a Coq goal for `P` and does not consume any hypotheses.
- `*` : instantiate all top-level universal quantifiers with meta variables.
For example, given:
......
......@@ -33,7 +33,7 @@ Proof.
iIntros (l) "Hl". wp_let. wp_proj. wp_bind (f2 _).
iApply (wp_wand with "Hf2"); iIntros (v) "H2". wp_let.
wp_apply (join_spec with "[$Hl]"). iIntros (w) "H1".
iSpecialize ("HΦ" with "* [-]"); first by iSplitL "H1". by wp_let.
iSpecialize ("HΦ" with "[-]"); first by iSplitL "H1". by wp_let.
Qed.
Lemma wp_par (Ψ1 Ψ2 : val iProp Σ)
......
......@@ -134,7 +134,7 @@ Lemma wp_safe e σ Φ :
Proof.
rewrite wp_unfold /wp_pre. iIntros "[(Hw&HE&Hσ) H]".
destruct (to_val e) as [v|] eqn:?; [eauto 10|].
rewrite fupd_eq. iMod ("H" with "* Hσ [-]") as ">(?&?&%&?)"; first by iFrame.
rewrite fupd_eq. iMod ("H" with "Hσ [-]") as ">(?&?&%&?)"; first by iFrame.
eauto 10.
Qed.
......
......@@ -96,7 +96,7 @@ Section lifting.
iMod (own_update_2 with "Hσ Hσf") as "[Hσ Hσf]".
{ by apply auth_update, option_local_update,
(exclusive_local_update _ (Excl σ2)). }
iFrame "Hσ". iApply ("H" with "* []"); eauto.
iFrame "Hσ". iApply ("H" with "[]"); eauto.
Qed.
Lemma ownP_lift_pure_step `{Inhabited (state Λ)} E Φ e1 :
......@@ -171,7 +171,7 @@ Section ectx_lifting.
iIntros "H". iApply (ownP_lift_step E); try done.
iMod "H" as (σ1) "(%&Hσ1&Hwp)". iModIntro. iExists σ1.
iSplit; first by eauto. iFrame. iNext. iIntros (e2 σ2 efs) "% ?".
iApply ("Hwp" with "* []"); by eauto.
iApply ("Hwp" with "[]"); eauto.
Qed.
Lemma ownP_lift_pure_head_step E Φ e1 :
......@@ -193,7 +193,7 @@ Section ectx_lifting.
WP e1 @ E {{ Φ }}.
Proof.
iIntros (?) "[? H]". iApply ownP_lift_atomic_step; eauto. iFrame. iNext.
iIntros (???) "% ?". iApply ("H" with "* []"); eauto.
iIntros (???) "% ?". iApply ("H" with "[]"); eauto.
Qed.
Lemma ownP_lift_atomic_det_head_step {E Φ e1} σ1 v2 σ2 efs :
......
......@@ -155,10 +155,10 @@ Proof.
{ by iDestruct "H" as ">>> $". }
iIntros (σ1) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]".
iModIntro. iNext. iIntros (e2 σ2 efs Hstep).
iMod ("H" with "* []") as "(Hphy & H & $)"; first done.
iMod ("H" with "[]") as "(Hphy & H & $)"; first done.
rewrite !wp_unfold /wp_pre. destruct (to_val e2) as [v2|] eqn:He2.
- iDestruct "H" as ">> $". iFrame. eauto.
- iMod ("H" with "* Hphy") as "[H _]".
- iMod ("H" with "Hphy") as "[H _]".
iDestruct "H" as %(? & ? & ? & ?). by edestruct (Hatomic _ _ _ _ Hstep).
Qed.
......
......@@ -21,6 +21,9 @@ Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
Global Instance from_assumption_bupd p P Q :
FromAssumption p P Q FromAssumption p P (|==> Q)%I.
Proof. rewrite /FromAssumption=>->. apply bupd_intro. Qed.
Global Instance from_assumption_forall {A} p (Φ : A uPred M) Q x :
FromAssumption p (Φ x) Q FromAssumption p ( x, Φ x) Q.
Proof. rewrite /FromAssumption=> <-. by rewrite forall_elim. Qed.
(* IntoPure *)
Global Instance into_pure_pure φ : @IntoPure M ⌜φ⌝ φ.
......@@ -217,6 +220,9 @@ Proof. by apply and_elim_l', impl_wand. Qed.
Global Instance into_wand_iff_r P Q : IntoWand (P Q) Q P.
Proof. apply and_elim_r', impl_wand. Qed.
Global Instance into_wand_forall {A} (Φ : A uPred M) P Q x :
IntoWand (Φ x) P Q IntoWand ( x, Φ x) P Q.
Proof. rewrite /IntoWand=> <-. apply forall_elim. Qed.
Global Instance into_wand_always R P Q : IntoWand R P Q IntoWand ( R) P Q.
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
......
......@@ -285,7 +285,9 @@ Local Tactic Notation "iSpecializePat" constr(H) constr(pat) :=
let rec go H1 pats :=
lazymatch pats with
| [] => idtac
| SForall :: ?pats => try (iSpecializeArgs H1 (hcons _ _)); go H1 pats
| SForall :: ?pats =>
idtac "the * specialization pattern is deprecated because it is applied implicitly";
go H1 pats
| SName ?H2 :: ?pats =>
eapply tac_specialize with _ _ H2 _ H1 _ _ _ _; (* (j:=H1) (i:=H2) *)
[env_cbv; reflexivity || fail "iSpecialize:" H2 "not found"
......@@ -424,11 +426,6 @@ Tactic Notation "iPoseProof" open_constr(lem) "as" constr(H) :=
(** * Apply *)
Tactic Notation "iApply" open_constr(lem) :=
let lem := (* add a `*` to specialize all top-level foralls *)
lazymatch lem with
| ITrm ?t ?xs ?pat => constr:(ITrm t xs ("*" +:+ pat))
| _ => constr:(ITrm lem hnil "*")
end in
let rec go H := first
[eapply tac_apply with _ H _ _ _;
[env_cbv; reflexivity
......@@ -964,27 +961,59 @@ Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
iRevertIntros (x1 x2 x3 x4 x5 x6 x7 x8) "" with tac.
(** * Destruct tactic *)
Class CopyDestruct {M} (P : uPred M).
Hint Mode CopyDestruct + ! : typeclass_instances.
Instance copy_destruct_forall {M A} (Φ : A uPred M) : CopyDestruct ( x, Φ x).
Instance copy_destruct_impl {M} (P Q : uPred M) :
CopyDestruct Q CopyDestruct (P Q).
Instance copy_destruct_wand {M} (P Q : uPred M) :
CopyDestruct Q CopyDestruct (P - Q).
Instance copy_destruct_always {M} (P : uPred M) :
CopyDestruct P CopyDestruct ( P).
Tactic Notation "iDestructCore" open_constr(lem) "as" constr(p) tactic(tac) :=
let hyp_name :=
lazymatch type of lem with
| string => constr:(Some lem)
| iTrm =>
lazymatch lem with
| @iTrm string ?H _ _ => constr:(Some H) | _ => constr:(@None string)
end
| _ => constr:(@None string)
end in
let intro_destruct n :=
let rec go n' :=
lazymatch n' with
| 0 => fail "iDestruct: cannot introduce" n "hypotheses"
| 1 => repeat iIntroForall; let H := iFresh in iIntro H; tac H
| S ?n' => repeat iIntroForall; let H := iFresh in iIntro H; go n'
end in intros; iStartProof; go n in
end in
intros; iStartProof; go n in
lazymatch type of lem with
| nat => intro_destruct lem
| Z => (* to make it work in Z_scope. We should just be able to bind
tactic notation arguments to notation scopes. *)
let n := eval compute in (Z.to_nat lem) in intro_destruct n
| string => tac lem
| iTrm =>
(* only copy the hypothesis when universal quantifiers are instantiated *)
lazymatch lem with
| @iTrm string ?H _ hnil ?pat => iSpecializeCore lem as p; last tac
| _ => iPoseProofCore lem as p false tac
| _ =>
(* Only copy the hypothesis in case there is a [CopyDestruct] instance.
Also, rule out cases in which it does not make sense to copy, namely when
destructing a lemma (instead of a hypothesis) or a spatial hyopthesis
(which cannot be kept). *)
lazymatch hyp_name with
| None => iPoseProofCore lem as p false tac
| Some ?H => iTypeOf H (fun q P =>
lazymatch q with
| true =>
(* persistent hypothesis, check for a CopyDestruct instance *)
tryif (let dummy := constr:(_ : CopyDestruct P) in idtac)
then (iPoseProofCore lem as p false tac)
else (iSpecializeCore lem as p; last (tac H))
| false =>
(* spatial hypothesis, cannot copy *)
iSpecializeCore lem as p; last (tac H)
end)
end
| _ => iPoseProofCore lem as p false tac
end.
Tactic Notation "iDestruct" open_constr(lem) "as" constr(pat) :=
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment