ofe.v 49.4 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26 27 28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32 33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

Ralf Jung's avatar
Ralf Jung committed
36 37 38 39 40 41 42 43
Section mixin.
  Local Set Primitive Projections.
  Record OfeMixin A `{Equiv A, Dist A} := {
    mixin_equiv_dist x y : x  y   n, x {n} y;
    mixin_dist_equivalence n : Equivalence (dist n);
    mixin_dist_S n x y : x {S n} y  x {n} y
  }.
End mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45

(** Bundeled version *)
46 47 48 49 50
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
51
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
53 54 55 56 57 58 59 60 61
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
62

63 64 65
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
66
different places (see for example the constructors [CmraT] and [UcmraT] in the
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

88
(** Lifting properties from the mixin *)
89 90
Section ofe_mixin.
  Context {A : ofeT}.
91
  Implicit Types x y : A.
92
  Lemma equiv_dist x y : x  y   n, x {n} y.
93
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
94
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
95
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
96
  Lemma dist_S n x y : x {S n} y  x {n} y.
97 98
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
99

Robbert Krebbers's avatar
Robbert Krebbers committed
100 101
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

102 103 104 105 106 107
(** Discrete OFEs and discrete OFE elements *)
Class Discrete {A : ofeT} (x : A) := discrete y : x {0} y  x  y.
Arguments discrete {_} _ {_} _ _.
Hint Mode Discrete + ! : typeclass_instances.
Instance: Params (@Discrete) 1.

108
Class OfeDiscrete (A : ofeT) := ofe_discrete_discrete (x : A) :> Discrete x.
109 110 111 112 113 114 115 116 117

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

118
Program Definition chain_map {A B : ofeT} (f : A  B)
119
    `{!NonExpansive f} (c : chain A) : chain B :=
120 121 122
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

123 124 125 126 127 128
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
129

130
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
131 132 133
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

134 135 136 137 138 139 140 141
Program Definition chain_const {A : ofeT} (a : A) : chain A :=
  {| chain_car n := a |}.
Next Obligation. by intros A a n i _. Qed.

Lemma compl_chain_const {A : ofeT} `{!Cofe A} (a : A) :
  compl (chain_const a)  a.
Proof. apply equiv_dist=>n. by rewrite conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
142
(** General properties *)
143
Section ofe.
144
  Context {A : ofeT}.
145
  Implicit Types x y : A.
146
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148
  Proof.
    split.
149 150
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
151
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
  Qed.
153
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
156 157
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  Qed.
159
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163 164
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
165 166
  Global Instance Discrete_proper : Proper (() ==> iff) (@Discrete A).
  Proof. intros x y Hxy. rewrite /Discrete. by setoid_rewrite Hxy. Qed.
167

Robbert Krebbers's avatar
Robbert Krebbers committed
168
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Proof. induction 2; eauto using dist_S. Qed.
170 171
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
172 173
  Instance ne_proper {B : ofeT} (f : A  B) `{!NonExpansive f} :
    Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
174
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
175
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C) `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
176 177 178
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
180
  Qed.
181

182
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
183 184 185 186
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
187

188
  Lemma discrete_iff n (x : A) `{!Discrete x} y : x  y  x {n} y.
189
  Proof.
190
    split; intros; auto. apply (discrete _), dist_le with n; auto with lia.
191
  Qed.
192
  Lemma discrete_iff_0 n (x : A) `{!Discrete x} y : x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
  Proof.
194
    split=> ?. by apply equiv_dist, (discrete _). eauto using dist_le with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
  Qed.
196
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
197

198
(** Contractive functions *)
199
Definition dist_later `{Dist A} (n : nat) (x y : A) : Prop :=
200
  match n with 0 => True | S n => x {n} y end.
201
Arguments dist_later _ _ !_ _ _ /.
202

203
Global Instance dist_later_equivalence (A : ofeT) n : Equivalence (@dist_later A _ n).
204 205
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

206 207 208
Lemma dist_dist_later {A : ofeT} n (x y : A) : dist n x y  dist_later n x y.
Proof. intros Heq. destruct n; first done. exact: dist_S. Qed.

209 210 211 212 213 214 215 216 217 218 219
Lemma dist_later_dist {A : ofeT} n (x y : A) : dist_later (S n) x y  dist n x y.
Proof. done. Qed.

(* We don't actually need this lemma (as our tactics deal with this through
   other means), but technically speaking, this is the reason why
   pre-composing a non-expansive function to a contractive function
   preserves contractivity. *)
Lemma ne_dist_later {A B : ofeT} (f : A  B) :
  NonExpansive f   n, Proper (dist_later n ==> dist_later n) f.
Proof. intros Hf [|n]; last exact: Hf. hnf. by intros. Qed.

220
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
221

222
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
223 224
Proof. by intros n y1 y2. Qed.

225
Section contractive.
226
  Local Set Default Proof Using "Type*".
227 228 229 230
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
231
  Proof. by apply (_ : Contractive f). Qed.
232
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
233
  Proof. intros. by apply (_ : Contractive f). Qed.
234

235 236
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
237 238 239 240
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

241 242
Ltac f_contractive :=
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245
  | |- ?f _ {_} ?f _ => simple apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (_ ==> dist_later _ ==> _) f)
246 247
  end;
  try match goal with
248
  | |- @dist_later ?A _ ?n ?x ?y =>
249
         destruct n as [|n]; [exact I|change (@dist A _ n x y)]
250
  end;
Robbert Krebbers's avatar
Robbert Krebbers committed
251
  try simple apply reflexivity.
252

Robbert Krebbers's avatar
Robbert Krebbers committed
253 254
Ltac solve_contractive :=
  solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
Robbert Krebbers's avatar
Robbert Krebbers committed
255

Robbert Krebbers's avatar
Robbert Krebbers committed
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
(** Limit preserving predicates *)
Class LimitPreserving `{!Cofe A} (P : A  Prop) : Prop :=
  limit_preserving (c : chain A) : ( n, P (c n))  P (compl c).
Hint Mode LimitPreserving + + ! : typeclass_instances.

Section limit_preserving.
  Context `{Cofe A}.
  (* These are not instances as they will never fire automatically...
     but they can still be helpful in proving things to be limit preserving. *)

  Lemma limit_preserving_ext (P Q : A  Prop) :
    ( x, P x  Q x)  LimitPreserving P  LimitPreserving Q.
  Proof. intros HP Hlimit c ?. apply HP, Hlimit=> n; by apply HP. Qed.

  Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P).
  Proof. intros c HP. apply (HP 0). Qed.

273
  Lemma limit_preserving_discrete (P : A  Prop) :
Robbert Krebbers's avatar
Robbert Krebbers committed
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    Proper (dist 0 ==> impl) P  LimitPreserving P.
  Proof. intros PH c Hc. by rewrite (conv_compl 0). Qed.

  Lemma limit_preserving_and (P1 P2 : A  Prop) :
    LimitPreserving P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof. intros Hlim1 Hlim2 c Hc. split. apply Hlim1, Hc. apply Hlim2, Hc. Qed.

  Lemma limit_preserving_impl (P1 P2 : A  Prop) :
    Proper (dist 0 ==> impl) P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof.
    intros Hlim1 Hlim2 c Hc HP1. apply Hlim2=> n; apply Hc.
    eapply Hlim1, HP1. apply dist_le with n; last lia. apply (conv_compl n).
  Qed.

  Lemma limit_preserving_forall {B} (P : B  A  Prop) :
    ( y, LimitPreserving (P y)) 
    LimitPreserving (λ x,  y, P y x).
  Proof. intros Hlim c Hc y. by apply Hlim. Qed.
End limit_preserving.

Robbert Krebbers's avatar
Robbert Krebbers committed
296
(** Fixpoint *)
297
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
298
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
Next Obligation.
300
  intros A ? f ? n.
301
  induction n as [|n IH]=> -[|i] //= ?; try omega.
302 303
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Qed.
305

306
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
307
  `{!Contractive f} : A := compl (fixpoint_chain f).
308 309 310
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
311 312

Section fixpoint.
313
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
314

315
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  Proof.
317 318
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
319
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  Qed.
321 322 323

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
324 325 326
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
327 328
  Qed.

329
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
330
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
331
  Proof.
332
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
333
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
334 335
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
  Qed.
337 338
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
340 341

  Lemma fixpoint_ind (P : A  Prop) :
342
    Proper (() ==> impl) P 
343
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
344
    LimitPreserving P 
345 346 347 348
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
Robbert Krebbers's avatar
Robbert Krebbers committed
349 350
    { intros n. rewrite /chcar. induction n as [|n IH]=> -[|i] //=;
        eauto using contractive_0, contractive_S with omega. }
351
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
Robbert Krebbers's avatar
Robbert Krebbers committed
352 353 354 355
    assert (f fp2  fp2).
    { apply equiv_dist=>n. rewrite /fp2 (conv_compl n) /= /chcar.
      induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S. }
    rewrite -(fixpoint_unique fp2) //.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
    apply Hlim=> n /=. by apply Nat_iter_ind.
357
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
358 359
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
360

361 362 363
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
364

365
Section fixpointK.
366
  Local Set Default Proof Using "Type*".
367
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  Context {f_contractive : Contractive (Nat.iter k f)} {f_ne : NonExpansive f}.
  (* Note than f_ne is crucial here:  there are functions f such that f^2 is contractive,
     but f is not non-expansive.
     Consider for example f: SPred → SPred (where SPred is "downclosed sets of natural numbers").
     Define f (using informative excluded middle) as follows:
     f(N) = N  (where N is the set of all natural numbers)
     f({0, ..., n}) = {0, ... n-1}  if n is even (so n-1 is at least -1, in which case we return the empty set)
     f({0, ..., n}) = {0, ..., n+2} if n is odd
     In other words, if we consider elements of SPred as ordinals, then we decreaste odd finite
     ordinals by 1 and increase even finite ordinals by 2.
     f is not non-expansive:  Consider f({0}) = ∅ and f({0,1}) = f({0,1,2,3}).
     The arguments are clearly 0-equal, but the results are not.

     Now consider g := f^2. We have
     g(N) = N
     g({0, ..., n}) = {0, ... n+1}  if n is even
     g({0, ..., n}) = {0, ..., n+4} if n is odd
     g is contractive.  All outputs contain 0, so they are all 0-equal.
     Now consider two n-equal inputs. We have to show that the outputs are n+1-equal.
     Either they both do not contain n in which case they have to be fully equal and
     hence so are the results.  Or else they both contain n, so the results will
     both contain n+1, so the results are n+1-equal.
   *)
391 392

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
393
  Local Existing Instance f_proper.
394

395
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
396
  Proof.
397 398
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
399 400
  Qed.

401
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
402
  Proof.
403 404
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
405 406
  Qed.

407
  Section fixpointK_ne.
408
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
409
    Context {g_ne : NonExpansive g}.
410

411
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
412
    Proof.
413 414 415
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
416 417
    Qed.

418 419 420
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
Ralf Jung's avatar
Ralf Jung committed
421 422 423 424

  Lemma fixpointK_ind (P : A  Prop) :
    Proper (() ==> impl) P 
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
425
    LimitPreserving P 
Ralf Jung's avatar
Ralf Jung committed
426 427
    P (fixpointK k f).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
428
    intros. rewrite /fixpointK. apply fixpoint_ind; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
    intros; apply Nat_iter_ind; auto.
Ralf Jung's avatar
Ralf Jung committed
430
  Qed.
431
End fixpointK.
432

Robbert Krebbers's avatar
Robbert Krebbers committed
433
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
434
Section fixpointAB.
435 436
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
478
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
479

Ralf Jung's avatar
Ralf Jung committed
480
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
512
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
513

514
(** Non-expansive function space *)
515 516
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
517
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
518 519
}.
Arguments CofeMor {_ _} _ {_}.
520 521
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
522

523 524 525 526
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

527 528 529 530 531 532 533
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
534 535
  Proof.
    split.
536
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
537
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
538
    - intros n; split.
539 540
      + by intros f x.
      + by intros f g ? x.
541
      + by intros f g h ?? x; trans (g x).
542
    - by intros n f g ? x; apply dist_S.
543
  Qed.
544 545 546 547 548 549 550 551 552 553 554
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
Jacques-Henri Jourdan's avatar
Typo  
Jacques-Henri Jourdan committed
555
  Global Program Instance ofe_mor_cofe `{Cofe B} : Cofe ofe_morC :=
556 557 558 559 560
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
561

562 563 564
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
565 566 567
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
568
  Proof. done. Qed.
569
End ofe_mor.
570

571
Arguments ofe_morC : clear implicits.
572
Notation "A -n> B" :=
573 574
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
575
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
576

577
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
578 579
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
580
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
581
Instance: Params (@cconst) 2.
582

Robbert Krebbers's avatar
Robbert Krebbers committed
583 584 585 586
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
587 588 589
Global Instance ccompose_ne {A B C} :
  NonExpansive2 (@ccompose A B C).
Proof. intros n ?? Hf g1 g2 Hg x. rewrite /= (Hg x) (Hf (g2 x)) //. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
590

Ralf Jung's avatar
Ralf Jung committed
591
(* Function space maps *)
592
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
593
  (h : A -n> B) : A' -n> B' := g  h  f.
594 595
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
596
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
597

598 599
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
600 601
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
602
Proof.
603
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
604
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
605 606
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
607
(** unit *)
608 609
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
610
  Definition unit_ofe_mixin : OfeMixin unit.
611
  Proof. by repeat split; try exists 0. Qed.
612
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
613

614 615
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
616

617
  Global Instance unit_ofe_discrete : OfeDiscrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
618
  Proof. done. Qed.
619
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
620 621

(** Product *)
622
Section product.
623
  Context {A B : ofeT}.
624 625 626

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
627 628 629
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
630
  Definition prod_ofe_mixin : OfeMixin (A * B).
631 632
  Proof.
    split.
633
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
634
      rewrite !equiv_dist; naive_solver.
635 636
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
637
  Qed.
638 639 640 641 642 643 644 645 646
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

647 648 649
  Global Instance prod_discrete (x : A * B) :
    Discrete (x.1)  Discrete (x.2)  Discrete x.
  Proof. by intros ???[??]; split; apply (discrete _). Qed.
650 651
  Global Instance prod_ofe_discrete :
    OfeDiscrete A  OfeDiscrete B  OfeDiscrete prodC.
652
  Proof. intros ?? [??]; apply _. Qed.
653 654 655 656 657
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

658
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
659 660 661 662 663
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
664 665 666
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
667

668 669
(** Functors *)
Structure cFunctor := CFunctor {
670
  cFunctor_car : ofeT  ofeT  ofeT;
671 672
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
673 674
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
675
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
676 677 678 679 680
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
681
Existing Instance cFunctor_ne.
682 683
Instance: Params (@cFunctor_map) 5.

684 685 686
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

687 688 689
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

690
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
691 692
Coercion cFunctor_diag : cFunctor >-> Funclass.

693
Program Definition constCF (B : ofeT) : cFunctor :=
694 695
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
696
Coercion constCF : ofeT >-> cFunctor.
697

698
Instance constCF_contractive B : cFunctorContractive (constCF B).
699
Proof. rewrite /cFunctorContractive; apply _. Qed.
700 701 702 703

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
704
Notation "∙" := idCF : cFunctor_scope.
705

706 707 708 709 710
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
711 712 713
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
714 715 716 717 718
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
719
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
720

721 722 723 724 725 726 727 728
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

729
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
730
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
731
  cFunctor_map A1 A2 B1 B2 fg :=
732
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
733
|}.
734 735
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
736
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
737
Qed.
Ralf Jung's avatar
Ralf Jung committed
738
Next Obligation.
739 740
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
741 742
Qed.
Next Obligation.
743 744
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
745
Qed.
746
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
747

748
Instance ofe_morCF_contractive F1 F2 :
749
  cFunctorContractive F1  cFunctorContractive F2 
750
  cFunctorContractive (ofe_morCF F1 F2).
751 752
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
753
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
754 755
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
756 757
(** Sum *)
Section sum.
758
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
759 760

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
761 762
  Global Instance inl_ne : NonExpansive (@inl A B) := _.
  Global Instance inr_ne : NonExpansive (@inr A B) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
763 764 765
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.