cmra.v 56.9 KB
Newer Older
1
From iris.algebra Require Export ofe monoid.
2
Set Default Proof Using "Type".
3

Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
6
7
8
9
10
11

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

12
13
14
15
16
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
17
18
19
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
20
Hint Extern 0 (_  _) => reflexivity.
21
22
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
23
24
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
25
Notation "✓{ n } x" := (validN n x)
26
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
30
Notation "✓ x" := (valid x) (at level 20) : C_scope.
31

32
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Notation "x ≼{ n } y" := (includedN n x y)
34
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Instance: Params (@includedN) 4.
36
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  (* setoids *)
40
  mixin_cmra_op_ne (x : A) : NonExpansive (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
43
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  (* valid *)
45
  mixin_cmra_valid_validN x :  x   n, {n} x;
46
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  (* monoid *)
48
49
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
50
51
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
52
  mixin_cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
53
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
54
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
55
56
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
57
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
Robbert Krebbers's avatar
Robbert Krebbers committed
58
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
59

Robbert Krebbers's avatar
Robbert Krebbers committed
60
(** Bundeled version *)
61
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
66
  cmra_op : Op cmra_car;
67
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  cmra_validN : ValidN cmra_car;
69
  cmra_ofe_mixin : OfeMixin cmra_car;
70
  cmra_mixin : CMRAMixin cmra_car;
71
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
72
}.
73
Arguments CMRAT' _ {_ _ _ _ _ _} _ _ _.
74
75
76
77
78
(* Given [m : CMRAMixin A], the notation [CMRAT A m] provides a smart
constructor, which uses [ofe_mixin_of A] to infer the canonical OFE mixin of
the type [A], so that it does not have to be given manually. *)
Notation CMRAT A m := (CMRAT' A (ofe_mixin_of A%type) m A) (only parsing).

79
80
81
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Arguments cmra_pcore : simpl never.
83
Arguments cmra_op : simpl never.
84
Arguments cmra_valid : simpl never.
85
Arguments cmra_validN : simpl never.
86
Arguments cmra_ofe_mixin : simpl never.
87
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
Add Printing Constructor cmraT.
89
90
91
92
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
93
94
Coercion cmra_ofeC (A : cmraT) : ofeT := OfeT A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeC.
Robbert Krebbers's avatar
Robbert Krebbers committed
95

96
97
98
99
Definition cmra_mixin_of' A {Ac : cmraT} (f : Ac  A) : CMRAMixin Ac := cmra_mixin Ac.
Notation cmra_mixin_of A :=
  ltac:(let H := eval hnf in (cmra_mixin_of' A id) in exact H) (only parsing).

100
101
102
103
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
104
  Global Instance cmra_op_ne (x : A) : NonExpansive (op x).
105
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
108
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
109
110
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
111
112
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
113
114
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
115
116
117
118
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
121
122
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
123
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
124
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
125
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
126
127
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
128
  Lemma cmra_extend n x y1 y2 :
129
    {n} x  x {n} y1  y2 
130
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
131
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
132
133
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
136
137
138
139
140
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.
141
Hint Mode Persistent + ! : typeclass_instances.
142
Instance: Params (@Persistent) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
143

144
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
145
146
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
147
Hint Mode Exclusive + ! : typeclass_instances.
148
Instance: Params (@Exclusive) 1.
149

150
151
152
153
154
(** * Cancelable elements. *)
Class Cancelable {A : cmraT} (x : A) :=
  cancelableN n y z : {n}(x  y)  x  y {n} x  z  y {n} z.
Arguments cancelableN {_} _ {_} _ _ _ _.
Hint Mode Cancelable + ! : typeclass_instances.
155
Instance: Params (@Cancelable) 1.
156
157
158
159
160
161

(** * Identity-free elements. *)
Class IdFree {A : cmraT} (x : A) :=
  id_free0_r y : {0}x  x  y {0} x  False.
Arguments id_free0_r {_} _ {_} _ _.
Hint Mode IdFree + ! : typeclass_instances.
162
Instance: Params (@IdFree) 1.
163

Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
166
167
168
169
170
171
172
173
174
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
175
(** * CMRAs with a unit element *)
176
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
177
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
178
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
179
180
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  mixin_ucmra_pcore_unit : pcore   Some 
182
}.
183

184
Structure ucmraT := UCMRAT' {
185
186
187
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  ucmra_pcore : PCore ucmra_car;
189
190
191
192
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
193
  ucmra_ofe_mixin : OfeMixin ucmra_car;
194
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
195
  ucmra_mixin : UCMRAMixin ucmra_car;
196
  _ : Type;
197
}.
198
Arguments UCMRAT' _ {_ _ _ _ _ _ _} _ _ _ _.
199
200
Notation UCMRAT A m :=
  (UCMRAT' A (ofe_mixin_of A%type) (cmra_mixin_of A%type) m A) (only parsing).
201
202
203
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
204
Arguments ucmra_pcore : simpl never.
205
206
207
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
208
Arguments ucmra_ofe_mixin : simpl never.
209
210
211
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
212
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
213
214
Coercion ucmra_ofeC (A : ucmraT) : ofeT := OfeT A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeC.
215
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
216
  CMRAT' A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A) A.
217
218
219
220
221
222
223
224
225
226
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
227
228
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
229
End ucmra_mixin.
230

231
(** * Discrete CMRAs *)
232
Class CMRADiscrete (A : cmraT) := {
233
234
235
236
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
237
(** * Morphisms *)
238
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
239
  cmra_monotone_ne :> NonExpansive f;
240
  cmra_monotone_validN n x : {n} x  {n} f x;
241
  cmra_monotone x y : x  y  f x  f y
242
}.
243
Arguments cmra_monotone_validN {_ _} _ {_} _ _ _.
244
Arguments cmra_monotone {_ _} _ {_} _ _ _.
245

Robbert Krebbers's avatar
Robbert Krebbers committed
246
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
247
Section cmra.
248
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
Implicit Types x y z : A.
250
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
251

252
(** ** Setoids *)
253
Global Instance cmra_pcore_ne' : NonExpansive (@pcore A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
254
Proof.
255
  intros n x y Hxy. destruct (pcore x) as [cx|] eqn:?.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
257
258
259
260
261
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
262
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
263
264
265
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
266
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
267
268
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
269
270
Global Instance cmra_op_ne' : NonExpansive2 (@op A _).
Proof. intros n x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
271
Global Instance cmra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
272
273
274
275
276
277
278
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
279
280
281
282
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
301
Global Instance cmra_opM_ne : NonExpansive2 (@opM A).
302
Proof. destruct 2; by ofe_subst. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
304
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
305

306
307
308
309
310
311
312
313
314
Global Instance Persistent_proper : Proper (() ==> iff) (@Persistent A).
Proof. solve_proper. Qed.
Global Instance Exclusive_proper : Proper (() ==> iff) (@Exclusive A).
Proof. intros x y Hxy. rewrite /Exclusive. by setoid_rewrite Hxy. Qed.
Global Instance Cancelable_proper : Proper (() ==> iff) (@Cancelable A).
Proof. intros x y Hxy. rewrite /Cancelable. by setoid_rewrite Hxy. Qed.
Global Instance IdFree_proper : Proper (() ==> iff) (@IdFree A).
Proof. intros x y Hxy. rewrite /IdFree. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
315
316
317
318
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

319
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
320
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
321
322
323
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
325
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
326
327
328
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
329
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
330
331
332
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
333
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
335
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
337
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed.
338
339
340
341
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
342
343
344
345
346
347
348
349
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
350

351
352
353
354
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

355
(** ** Exclusive elements *)
356
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
357
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
358
359
360
361
362
363
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
364
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
365
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
366
367
368
369
Lemma exclusive_includedN n x `{!Exclusive x} y : x {n} y  {n} y  False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x  y   y  False.
Proof. intros [? ->]. by apply exclusive_l. Qed.
370

371
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
372
373
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
375
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
377
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
Global Instance cmra_included_trans: Transitive (@included A _ _).
379
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
381
Qed.
382
383
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
385
Proof. intros Hyv [z ?]; ofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
388

Robbert Krebbers's avatar
Robbert Krebbers committed
389
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
390
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
392
393
394
395
396
397
398
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
399
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
400
Lemma cmra_included_r x y : y  x  y.
401
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402

403
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
404
405
406
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
407
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
409
  exists cy; by rewrite Hcx.
Qed.
410
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
411
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
412
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
414
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
415
416
417
418
419
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
420
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
422
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
423

424
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
425
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
426
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
427
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
428
429
430
431
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
432
433
434
435
Lemma cmra_monoN n x1 x2 y1 y2 : x1 {n} y1  x2 {n} y2  x1  x2 {n} y1  y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1  y1  x2  y2  x1  x2  y1  y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.
436

437
438
439
440
441
442
443
Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
444
Lemma cmra_included_dist_l n x1 x2 x1' :
445
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
446
Proof.
447
448
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
449
Qed.
450

Robbert Krebbers's avatar
Robbert Krebbers committed
451
452
(** ** Total core *)
Section total_core.
453
  Local Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
454
455
456
457
458
459
460
461
462
463
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
464
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
466
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
467
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
468
469
470
    by rewrite /core /= Hcx Hcy.
  Qed.

471
  Global Instance cmra_core_ne : NonExpansive (@core A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
472
  Proof.
473
    intros n x y Hxy. destruct (cmra_total x) as [cx Hcx].
Robbert Krebbers's avatar
Robbert Krebbers committed
474
475
476
477
478
479
480
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
481
482
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
513
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
514
515
  Proof.
    intros [z ->].
516
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
517
518
519
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
520
(** ** Timeless *)
521
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
522
523
Proof.
  intros ?? [x' ?].
524
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
525
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
526
Qed.
527
528
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
529
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
530
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
531
532
Proof.
  intros ??? z Hz.
533
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
534
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
535
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
536
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
537

538
539
540
541
542
543
544
545
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
  split; first by apply cmra_included_includedN.
547
548
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
549
550
551

(** Cancelable elements  *)
Global Instance cancelable_proper : Proper (equiv ==> iff) (@Cancelable A).
552
553
Proof. unfold Cancelable. intros x x' EQ. by setoid_rewrite EQ. Qed.
Lemma cancelable x `{!Cancelable x} y z : (x  y)  x  y  x  z  y  z.
554
555
556
557
558
559
560
Proof. rewrite !equiv_dist cmra_valid_validN. intros. by apply (cancelableN x). Qed.
Lemma discrete_cancelable x `{CMRADiscrete A}:
  ( y z, (x  y)  x  y  x  z  y  z)  Cancelable x.
Proof. intros ????. rewrite -!timeless_iff -cmra_discrete_valid_iff. auto. Qed.
Global Instance cancelable_op x y :
  Cancelable x  Cancelable y  Cancelable (x  y).
Proof.
561
  intros ?? n z z' ??. apply (cancelableN y), (cancelableN x).
562
563
564
565
566
  - eapply cmra_validN_op_r. by rewrite assoc.
  - by rewrite assoc.
  - by rewrite !assoc.
Qed.
Global Instance exclusive_cancelable (x : A) : Exclusive x  Cancelable x.
567
Proof. intros ? n z z' []%(exclusiveN_l _ x). Qed.
568
569

(** Id-free elements  *)
570
Global Instance id_free_ne n : Proper (dist n ==> iff) (@IdFree A).
571
Proof.
572
573
  intros x x' EQ%(dist_le _ 0); last lia. rewrite /IdFree.
  split=> y ?; (rewrite -EQ || rewrite EQ); eauto.
574
575
Qed.
Global Instance id_free_proper : Proper (equiv ==> iff) (@IdFree A).
576
Proof. by move=> P Q /equiv_dist /(_ 0)=> ->. Qed.
577
578
579
580
581
582
583
584
585
Lemma id_freeN_r n n' x `{!IdFree x} y : {n}x  x  y {n'} x  False.
Proof. eauto using cmra_validN_le, dist_le with lia. Qed.
Lemma id_freeN_l n n' x `{!IdFree x} y : {n}x  y  x {n'} x  False.
Proof. rewrite comm. eauto using id_freeN_r. Qed.
Lemma id_free_r x `{!IdFree x} y : x  x  y  x  False.
Proof. move=> /cmra_valid_validN ? /equiv_dist. eauto. Qed.
Lemma id_free_l x `{!IdFree x} y : x  y  x  x  False.
Proof. rewrite comm. eauto using id_free_r. Qed.
Lemma discrete_id_free x `{CMRADiscrete A}:
586
  ( y,  x  x  y  x  False)  IdFree x.
587
Proof. repeat intro. eauto using cmra_discrete_valid, cmra_discrete, timeless. Qed.
588
Global Instance id_free_op_r x y : IdFree y  Cancelable x  IdFree (x  y).
589
Proof.
590
  intros ?? z ? Hid%symmetry. revert Hid. rewrite -assoc=>/(cancelableN x) ?.
591
592
  eapply (id_free0_r _); [by eapply cmra_validN_op_r |symmetry; eauto].
Qed.
593
Global Instance id_free_op_l x y : IdFree x  Cancelable y  IdFree (x  y).
594
595
596
Proof. intros. rewrite comm. apply _. Qed.
Global Instance exclusive_id_free x : Exclusive x  IdFree x.
Proof. intros ? z ? Hid. apply (exclusiveN_l 0 x z). by rewrite Hid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
597
598
End cmra.

599
600
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
617
    intros x. destruct (cmra_pcore_mono'  x ) as (cx&->&?);
618
      eauto using ucmra_unit_least, (persistent (:A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
619
  Qed.
620
621
  Global Instance empty_cancelable : Cancelable (:A).
  Proof. intros ???. by rewrite !left_id. Qed.
622
623
624

  (* For big ops *)
  Global Instance cmra_monoid : Monoid (@op A _) := {| monoid_unit :=  |}.
625
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
626

627
Hint Immediate cmra_unit_total.
628
629
630

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
631
  Local Set Default Proof Using "Type*".
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
Robbert Krebbers's avatar
Robbert Krebbers committed
655
  Lemma persistent_dup_L x `{!Persistent x} : x = x  x.
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
678
  Local Set Default Proof Using "Type*".
679
680
681
682
683
684
685
686
687
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_left_id_L : LeftId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id_L : RightId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
688
689
690
691
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
692
693
  Context (op_ne :  (x : A), NonExpansive (op x)).
  Context (core_ne : NonExpansive (@core A _)).
Robbert Krebbers's avatar
Robbert Krebbers committed
694
695
696
697
698
699
700
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
701
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
702
703
704
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
705
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
706
  Lemma cmra_total_mixin : CMRAMixin A.
707
  Proof using Type*.
Robbert Krebbers's avatar
Robbert Krebbers committed
708
709
710
711
712
713
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
714
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
715
716
717
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
718

719
(** * Properties about monotone functions *)
720
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
721
Proof. repeat split; by try apply _. Qed.
722
723
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
724
725
Proof.
  split.
726
  - apply _.
727
  - move=> n x Hx /=. by apply cmra_monotone_validN, cmra_monotone_validN.
728
  - move=> x y Hxy /=. by apply cmra_monotone, cmra_monotone.
Robbert Krebbers's avatar
Robbert Krebbers committed
729
Qed.
730

731
Section cmra_monotone.
732
  Local Set Default Proof Using "Type*".
733
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
734
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
735
  Lemma cmra_monotoneN n x y : x {n} y  f x {n} f y.
736
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
737
    intros [z ->].
738
    apply cmra_included_includedN, (cmra_monotone f), cmra_included_l.
739
  Qed.
740
741
  Lemma cmra_monotone_valid x :  x   f x.
  Proof. rewrite !cmra_valid_validN; eauto using cmra_monotone_validN. Qed.
742
743
End cmra_monotone.

744
745
(** Functors *)
Structure rFunctor := RFunctor {
746
  rFunctor_car : ofeT  ofeT  cmraT;
747
748
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
749
750
  rFunctor_ne A1 A2 B1 B2 :
    NonExpansive (@rFunctor_map A1 A2 B1 B2);
751
752
753
754
755
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
756
    CMRAMonotone (rFunctor_map