ofe.v 48 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26 27 28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32 33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
Record OfeMixin A `{Equiv A, Dist A} := {
37
  mixin_equiv_dist x y : x  y   n, x {n} y;
38
  mixin_dist_equivalence n : Equivalence (dist n);
39
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41 42
}.

(** Bundeled version *)
43 44 45 46 47
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
48
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
49
}.
50 51 52 53 54 55 56 57 58
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
different places (see for example the constructors [CMRAT] and [UCMRAT] in the
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

85
(** Lifting properties from the mixin *)
86 87
Section ofe_mixin.
  Context {A : ofeT}.
88
  Implicit Types x y : A.
89
  Lemma equiv_dist x y : x  y   n, x {n} y.
90
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
91
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
92
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
93
  Lemma dist_S n x y : x {S n} y  x {n} y.
94 95
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
96

Robbert Krebbers's avatar
Robbert Krebbers committed
97 98
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

99
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
100
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
101
   more sense. *)
102 103 104
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.
105
Instance: Params (@Timeless) 1.
106

107 108 109 110 111 112 113 114 115 116
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

117
Program Definition chain_map {A B : ofeT} (f : A  B)
118
    `{!NonExpansive f} (c : chain A) : chain B :=
119 120 121
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

122 123 124 125 126 127
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
128

129
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
130 131 132
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

133 134 135 136 137 138 139 140
Program Definition chain_const {A : ofeT} (a : A) : chain A :=
  {| chain_car n := a |}.
Next Obligation. by intros A a n i _. Qed.

Lemma compl_chain_const {A : ofeT} `{!Cofe A} (a : A) :
  compl (chain_const a)  a.
Proof. apply equiv_dist=>n. by rewrite conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
141
(** General properties *)
142
Section ofe.
143
  Context {A : ofeT}.
144
  Implicit Types x y : A.
145
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147
  Proof.
    split.
148 149
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
150
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  Qed.
152
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
155 156
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
157
  Qed.
158
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
161 162 163
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
164 165 166
  Global Instance Timeless_proper : Proper (() ==> iff) (@Timeless A).
  Proof. intros x y Hxy. rewrite /Timeless. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
167
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  Proof. induction 2; eauto using dist_S. Qed.
169 170
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
171 172
  Instance ne_proper {B : ofeT} (f : A  B) `{!NonExpansive f} :
    Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
174
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C) `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
175 176 177
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
179
  Qed.
180

181
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
182 183 184 185
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
186

187 188
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
190
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
191 192 193 194
  Lemma timeless_iff_0 n (x : A) `{!Timeless x} y : x {0} y  x {n} y.
  Proof.
    split=> ?. by apply equiv_dist, (timeless _). eauto using dist_le with lia.
  Qed.
195
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
196

197
(** Contractive functions *)
198 199 200 201 202 203 204
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

205 206 207
Lemma dist_dist_later {A : ofeT} n (x y : A) : dist n x y  dist_later n x y.
Proof. intros Heq. destruct n; first done. exact: dist_S. Qed.

208 209 210 211 212 213 214 215 216 217 218
Lemma dist_later_dist {A : ofeT} n (x y : A) : dist_later (S n) x y  dist n x y.
Proof. done. Qed.

(* We don't actually need this lemma (as our tactics deal with this through
   other means), but technically speaking, this is the reason why
   pre-composing a non-expansive function to a contractive function
   preserves contractivity. *)
Lemma ne_dist_later {A B : ofeT} (f : A  B) :
  NonExpansive f   n, Proper (dist_later n ==> dist_later n) f.
Proof. intros Hf [|n]; last exact: Hf. hnf. by intros. Qed.

219
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
220

221
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
222 223
Proof. by intros n y1 y2. Qed.

224
Section contractive.
225
  Local Set Default Proof Using "Type*".
226 227 228 229
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
230
  Proof. by apply (_ : Contractive f). Qed.
231
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
232
  Proof. intros. by apply (_ : Contractive f). Qed.
233

234 235
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
236 237 238 239
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

240 241 242 243 244 245 246
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
247
  | |- @dist_later ?A ?n ?x ?y =>
248
         destruct n as [|n]; [exact I|change (@dist A _ n x y)]
249 250 251
  end;
  try reflexivity.

Ralf Jung's avatar
Ralf Jung committed
252
Ltac solve_contractive := solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
Robbert Krebbers's avatar
Robbert Krebbers committed
253

Robbert Krebbers's avatar
Robbert Krebbers committed
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
(** Limit preserving predicates *)
Class LimitPreserving `{!Cofe A} (P : A  Prop) : Prop :=
  limit_preserving (c : chain A) : ( n, P (c n))  P (compl c).
Hint Mode LimitPreserving + + ! : typeclass_instances.

Section limit_preserving.
  Context `{Cofe A}.
  (* These are not instances as they will never fire automatically...
     but they can still be helpful in proving things to be limit preserving. *)

  Lemma limit_preserving_ext (P Q : A  Prop) :
    ( x, P x  Q x)  LimitPreserving P  LimitPreserving Q.
  Proof. intros HP Hlimit c ?. apply HP, Hlimit=> n; by apply HP. Qed.

  Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P).
  Proof. intros c HP. apply (HP 0). Qed.

  Lemma limit_preserving_timeless (P : A  Prop) :
    Proper (dist 0 ==> impl) P  LimitPreserving P.
  Proof. intros PH c Hc. by rewrite (conv_compl 0). Qed.

  Lemma limit_preserving_and (P1 P2 : A  Prop) :
    LimitPreserving P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof. intros Hlim1 Hlim2 c Hc. split. apply Hlim1, Hc. apply Hlim2, Hc. Qed.

  Lemma limit_preserving_impl (P1 P2 : A  Prop) :
    Proper (dist 0 ==> impl) P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof.
    intros Hlim1 Hlim2 c Hc HP1. apply Hlim2=> n; apply Hc.
    eapply Hlim1, HP1. apply dist_le with n; last lia. apply (conv_compl n).
  Qed.

  Lemma limit_preserving_forall {B} (P : B  A  Prop) :
    ( y, LimitPreserving (P y)) 
    LimitPreserving (λ x,  y, P y x).
  Proof. intros Hlim c Hc y. by apply Hlim. Qed.
End limit_preserving.

Robbert Krebbers's avatar
Robbert Krebbers committed
294
(** Fixpoint *)
295
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
296
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Next Obligation.
298
  intros A ? f ? n.
299
  induction n as [|n IH]=> -[|i] //= ?; try omega.
300 301
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Qed.
303

304
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
305
  `{!Contractive f} : A := compl (fixpoint_chain f).
306 307 308
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310

Section fixpoint.
311
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
312

313
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
314
  Proof.
315 316
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
317
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  Qed.
319 320 321

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
322 323 324
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
325 326
  Qed.

327
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
328
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  Proof.
330
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
331
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
332 333
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  Qed.
335 336
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
338 339

  Lemma fixpoint_ind (P : A  Prop) :
340
    Proper (() ==> impl) P 
341
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
342
    LimitPreserving P 
343 344 345 346
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
Robbert Krebbers's avatar
Robbert Krebbers committed
347 348
    { intros n. rewrite /chcar. induction n as [|n IH]=> -[|i] //=;
        eauto using contractive_0, contractive_S with omega. }
349
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
Robbert Krebbers's avatar
Robbert Krebbers committed
350 351 352 353
    assert (f fp2  fp2).
    { apply equiv_dist=>n. rewrite /fp2 (conv_compl n) /= /chcar.
      induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S. }
    rewrite -(fixpoint_unique fp2) //.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
    apply Hlim=> n /=. by apply Nat_iter_ind.
355
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356 357
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
358

359 360 361
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
362

363
Section fixpointK.
364
  Local Set Default Proof Using "Type*".
365
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  Context {f_contractive : Contractive (Nat.iter k f)} {f_ne : NonExpansive f}.
  (* Note than f_ne is crucial here:  there are functions f such that f^2 is contractive,
     but f is not non-expansive.
     Consider for example f: SPred → SPred (where SPred is "downclosed sets of natural numbers").
     Define f (using informative excluded middle) as follows:
     f(N) = N  (where N is the set of all natural numbers)
     f({0, ..., n}) = {0, ... n-1}  if n is even (so n-1 is at least -1, in which case we return the empty set)
     f({0, ..., n}) = {0, ..., n+2} if n is odd
     In other words, if we consider elements of SPred as ordinals, then we decreaste odd finite
     ordinals by 1 and increase even finite ordinals by 2.
     f is not non-expansive:  Consider f({0}) = ∅ and f({0,1}) = f({0,1,2,3}).
     The arguments are clearly 0-equal, but the results are not.

     Now consider g := f^2. We have
     g(N) = N
     g({0, ..., n}) = {0, ... n+1}  if n is even
     g({0, ..., n}) = {0, ..., n+4} if n is odd
     g is contractive.  All outputs contain 0, so they are all 0-equal.
     Now consider two n-equal inputs. We have to show that the outputs are n+1-equal.
     Either they both do not contain n in which case they have to be fully equal and
     hence so are the results.  Or else they both contain n, so the results will
     both contain n+1, so the results are n+1-equal.
   *)
389 390

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
391
  Local Existing Instance f_proper.
392

393
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
394
  Proof.
395 396
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
397 398
  Qed.

399
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
400
  Proof.
401 402
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
403 404
  Qed.

405
  Section fixpointK_ne.
406
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
407
    Context {g_ne : NonExpansive g}.
408

409
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
410
    Proof.
411 412 413
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
414 415
    Qed.

416 417 418
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
Ralf Jung's avatar
Ralf Jung committed
419 420 421 422

  Lemma fixpointK_ind (P : A  Prop) :
    Proper (() ==> impl) P 
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
423
    LimitPreserving P 
Ralf Jung's avatar
Ralf Jung committed
424 425
    P (fixpointK k f).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
    intros. rewrite /fixpointK. apply fixpoint_ind; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
    intros; apply Nat_iter_ind; auto.
Ralf Jung's avatar
Ralf Jung committed
428
  Qed.
429
End fixpointK.
430

Robbert Krebbers's avatar
Robbert Krebbers committed
431
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
432
Section fixpointAB.
433 434
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
476
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
477

Ralf Jung's avatar
Ralf Jung committed
478
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
510
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
511

512
(** Function space *)
513
(* We make [ofe_fun] a definition so that we can register it as a canonical
514
structure. *)
515
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
516

517 518 519 520 521
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
522 523 524 525 526 527 528 529 530 531
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
532
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
533

534 535 536 537 538 539 540 541 542
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
543
Notation "A -c> B" :=
544 545
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
546 547
  Inhabited (A -c> B) := populate (λ _, inhabitant).

548
(** Non-expansive function space *)
549 550
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
551
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
552 553
}.
Arguments CofeMor {_ _} _ {_}.
554 555
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
556

557 558 559 560
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

561 562 563 564 565 566 567
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
568 569
  Proof.
    split.
570
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
571
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
572
    - intros n; split.
573 574
      + by intros f x.
      + by intros f g ? x.
575
      + by intros f g h ?? x; trans (g x).
576
    - by intros n f g ? x; apply dist_S.
577
  Qed.
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
595

596 597 598
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
599 600 601
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
602
  Proof. done. Qed.
603
End ofe_mor.
604

605
Arguments ofe_morC : clear implicits.
606
Notation "A -n> B" :=
607 608
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
609
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
610

611
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
612 613
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
614
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
615
Instance: Params (@cconst) 2.
616

Robbert Krebbers's avatar
Robbert Krebbers committed
617 618 619 620 621
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
622
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
623
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
624

Ralf Jung's avatar
Ralf Jung committed
625
(* Function space maps *)
626
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
627
  (h : A -n> B) : A' -n> B' := g  h  f.
628 629
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
630
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
631

632 633
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
634 635
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
636
Proof.
637
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
638
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
639 640
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
641
(** unit *)
642 643
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
644
  Definition unit_ofe_mixin : OfeMixin unit.
645
  Proof. by repeat split; try exists 0. Qed.
646
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
647

648 649
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
650 651

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
652
  Proof. done. Qed.
653
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
654 655

(** Product *)
656
Section product.
657
  Context {A B : ofeT}.
658 659 660

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
661 662 663
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
664
  Definition prod_ofe_mixin : OfeMixin (A * B).
665 666
  Proof.
    split.
667
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
668
      rewrite !equiv_dist; naive_solver.
669 670
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
671
  Qed.
672 673 674 675 676 677 678 679 680
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

681 682 683
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
684 685
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
686 687 688 689 690
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

691
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
692 693 694 695 696
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
697 698 699
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
700

701 702
(** Functors *)
Structure cFunctor := CFunctor {
703
  cFunctor_car : ofeT  ofeT  ofeT;
704 705
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
706 707
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
708
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
709 710 711 712 713
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
714
Existing Instance cFunctor_ne.
715 716
Instance: Params (@cFunctor_map) 5.

717 718 719
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

720 721 722
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

723
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
724 725
Coercion cFunctor_diag : cFunctor >-> Funclass.

726
Program Definition constCF (B : ofeT) : cFunctor :=
727 728
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
729
Coercion constCF : ofeT >-> cFunctor.
730

731
Instance constCF_contractive B : cFunctorContractive (constCF B).
732
Proof. rewrite /cFunctorContractive; apply _. Qed.
733 734 735 736

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
737
Notation "∙" := idCF : cFunctor_scope.
738

739 740 741 742 743
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
744 745 746
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
747 748 749 750 751
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
752
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
753

754 755 756 757 758 759 760 761
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

762 763 764
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
765

766
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
767
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
768 769 770
Instance ofe_funC_map_ne {A B B'} :
  NonExpansive (@ofe_funC_map A B B').
Proof. intros n f f' Hf g x. apply Hf. Qed.
771

772 773 774
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
775 776
|}.
Next Obligation.
777
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
778 779 780 781 782 783
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
784
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
785

786 787
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
788 789