cmra.v 57.7 KB
Newer Older
1
From iris.algebra Require Export ofe.
2
Set Default Proof Using "Type".
3

Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
6
7
8
9
10
11

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

12
13
14
15
16
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
17
18
19
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
20
Hint Extern 0 (_  _) => reflexivity.
21
22
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
23
24
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
25
Notation "✓{ n } x" := (validN n x)
26
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
30
Notation "✓ x" := (valid x) (at level 20) : C_scope.
31

32
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Notation "x ≼{ n } y" := (includedN n x y)
34
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Instance: Params (@includedN) 4.
36
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  (* setoids *)
40
  mixin_cmra_op_ne (x : A) : NonExpansive (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
43
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  (* valid *)
45
  mixin_cmra_valid_validN x :  x   n, {n} x;
46
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  (* monoid *)
48
49
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
50
51
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
52
  mixin_cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
53
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
54
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
55
56
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
57
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
Robbert Krebbers's avatar
Robbert Krebbers committed
58
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
59

Robbert Krebbers's avatar
Robbert Krebbers committed
60
(** Bundeled version *)
61
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
66
  cmra_op : Op cmra_car;
67
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  cmra_validN : ValidN cmra_car;
69
  cmra_ofe_mixin : OfeMixin cmra_car;
70
  cmra_mixin : CMRAMixin cmra_car;
71
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
72
}.
73
Arguments CMRAT' _ {_ _ _ _ _ _} _ _ _.
74
75
76
77
78
(* Given [m : CMRAMixin A], the notation [CMRAT A m] provides a smart
constructor, which uses [ofe_mixin_of A] to infer the canonical OFE mixin of
the type [A], so that it does not have to be given manually. *)
Notation CMRAT A m := (CMRAT' A (ofe_mixin_of A%type) m A) (only parsing).

79
80
81
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Arguments cmra_pcore : simpl never.
83
Arguments cmra_op : simpl never.
84
Arguments cmra_valid : simpl never.
85
Arguments cmra_validN : simpl never.
86
Arguments cmra_ofe_mixin : simpl never.
87
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
Add Printing Constructor cmraT.
89
90
91
92
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
93
94
Coercion cmra_ofeC (A : cmraT) : ofeT := OfeT A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeC.
Robbert Krebbers's avatar
Robbert Krebbers committed
95

96
97
98
99
Definition cmra_mixin_of' A {Ac : cmraT} (f : Ac  A) : CMRAMixin Ac := cmra_mixin Ac.
Notation cmra_mixin_of A :=
  ltac:(let H := eval hnf in (cmra_mixin_of' A id) in exact H) (only parsing).

100
101
102
103
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
104
  Global Instance cmra_op_ne (x : A) : NonExpansive (op x).
105
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
108
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
109
110
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
111
112
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
113
114
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
115
116
117
118
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
121
122
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
123
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
124
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
125
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
126
127
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
128
  Lemma cmra_extend n x y1 y2 :
129
    {n} x  x {n} y1  y2 
130
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
131
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
132
133
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
136
137
138
139
140
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.
141
Hint Mode Persistent + ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
142

143
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
144
145
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
146
Hint Mode Exclusive + ! : typeclass_instances.
147

148
149
150
151
152
153
154
155
156
157
158
159
(** * Cancelable elements. *)
Class Cancelable {A : cmraT} (x : A) :=
  cancelableN n y z : {n}(x  y)  x  y {n} x  z  y {n} z.
Arguments cancelableN {_} _ {_} _ _ _ _.
Hint Mode Cancelable + ! : typeclass_instances.

(** * Identity-free elements. *)
Class IdFree {A : cmraT} (x : A) :=
  id_free0_r y : {0}x  x  y {0} x  False.
Arguments id_free0_r {_} _ {_} _ _.
Hint Mode IdFree + ! : typeclass_instances.

Robbert Krebbers's avatar
Robbert Krebbers committed
160
161
162
163
164
165
166
167
168
169
170
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
171
(** * CMRAs with a unit element *)
172
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
173
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
174
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
175
176
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
177
  mixin_ucmra_pcore_unit : pcore   Some 
178
}.
179

180
Structure ucmraT := UCMRAT' {
181
182
183
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
184
  ucmra_pcore : PCore ucmra_car;
185
186
187
188
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
189
  ucmra_ofe_mixin : OfeMixin ucmra_car;
190
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
191
  ucmra_mixin : UCMRAMixin ucmra_car;
192
  _ : Type;
193
}.
194
Arguments UCMRAT' _ {_ _ _ _ _ _ _} _ _ _ _.
195
196
Notation UCMRAT A m :=
  (UCMRAT' A (ofe_mixin_of A%type) (cmra_mixin_of A%type) m A) (only parsing).
197
198
199
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
Arguments ucmra_pcore : simpl never.
201
202
203
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
204
Arguments ucmra_ofe_mixin : simpl never.
205
206
207
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
208
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
209
210
Coercion ucmra_ofeC (A : ucmraT) : ofeT := OfeT A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeC.
211
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
212
  CMRAT' A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A) A.
213
214
215
216
217
218
219
220
221
222
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
224
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
225
End ucmra_mixin.
226

227
(** * Discrete CMRAs *)
228
Class CMRADiscrete (A : cmraT) := {
229
230
231
232
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
233
(** * Morphisms *)
234
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
235
  cmra_monotone_ne :> NonExpansive f;
236
  cmra_monotone_validN n x : {n} x  {n} f x;
237
  cmra_monotone x y : x  y  f x  f y
238
}.
239
Arguments cmra_monotone_validN {_ _} _ {_} _ _ _.
240
Arguments cmra_monotone {_ _} _ {_} _ _ _.
241

242
243
244
(* Not all intended homomorphisms preserve validity, in particular it does not
hold for the [ownM] and [own] connectives. *)
Class CMRAHomomorphism {A B : cmraT} (f : A  B) := {
245
  cmra_homomorphism_ne :> NonExpansive f;
246
247
248
249
250
251
252
253
254
255
  cmra_homomorphism x y : f (x  y)  f x  f y
}.
Arguments cmra_homomorphism {_ _} _ _ _ _.

Class UCMRAHomomorphism {A B : ucmraT} (f : A  B) := {
  ucmra_homomorphism :> CMRAHomomorphism f;
  ucmra_homomorphism_unit : f   
}.
Arguments ucmra_homomorphism_unit {_ _} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
256
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
257
Section cmra.
258
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
Implicit Types x y z : A.
260
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
261

262
(** ** Setoids *)
263
Global Instance cmra_pcore_ne' : NonExpansive (@pcore A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
264
Proof.
265
  intros n x y Hxy. destruct (pcore x) as [cx|] eqn:?.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
267
268
269
270
271
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
272
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
274
275
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
276
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
277
278
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
279
280
Global Instance cmra_op_ne' : NonExpansive2 (@op A _).
Proof. intros n x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
281
Global Instance cmra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
282
283
284
285
286
287
288
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
289
290
291
292
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
311
Global Instance cmra_opM_ne : NonExpansive2 (@opM A).
Robbert Krebbers's avatar
Robbert Krebbers committed
312
313
314
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
315

Robbert Krebbers's avatar
Robbert Krebbers committed
316
317
318
319
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

320
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
321
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
322
323
324
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
325
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
326
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
327
328
329
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
330
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
331
332
333
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
334
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
335
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
336
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
338
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed.
339
340
341
342
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
344
345
346
347
348
349
350
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
351

352
353
354
355
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

356
(** ** Exclusive elements *)
357
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
358
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
359
360
361
362
363
364
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
365
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
366
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
367
368
369
370
Lemma exclusive_includedN n x `{!Exclusive x} y : x {n} y  {n} y  False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x  y   y  False.
Proof. intros [? ->]. by apply exclusive_l. Qed.
371

372
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
373
374
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
376
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
378
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379
Global Instance cmra_included_trans: Transitive (@included A _ _).
380
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
381
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
382
Qed.
383
384
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
385
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
386
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
389

Robbert Krebbers's avatar
Robbert Krebbers committed
390
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
391
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
393
394
395
396
397
398
399
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
400
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
401
Lemma cmra_included_r x y : y  x  y.
402
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
403

404
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
405
406
407
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
408
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
409
410
  exists cy; by rewrite Hcx.
Qed.
411
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
412
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
415
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
416
417
418
419
420
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
422
423
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
424

425
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
426
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
427
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
428
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
429
430
431
432
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
433
434
435
436
Lemma cmra_monoN n x1 x2 y1 y2 : x1 {n} y1  x2 {n} y2  x1  x2 {n} y1  y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1  y1  x2  y2  x1  x2  y1  y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.
437

438
439
440
441
442
443
444
Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
445
Lemma cmra_included_dist_l n x1 x2 x1' :
446
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
447
Proof.
448
449
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
Qed.
451

Robbert Krebbers's avatar
Robbert Krebbers committed
452
453
(** ** Total core *)
Section total_core.
454
  Local Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
455
456
457
458
459
460
461
462
463
464
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
465
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
466
467
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
468
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
469
470
471
    by rewrite /core /= Hcx Hcy.
  Qed.

472
  Global Instance cmra_core_ne : NonExpansive (@core A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
473
  Proof.
474
    intros n x y Hxy. destruct (cmra_total x) as [cx Hcx].
Robbert Krebbers's avatar
Robbert Krebbers committed
475
476
477
478
479
480
481
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
482
483
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
514
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
516
  Proof.
    intros [z ->].
517
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
519
520
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
521
(** ** Timeless *)
522
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
523
524
Proof.
  intros ?? [x' ?].
525
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
527
Qed.
528
529
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
530
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
531
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
532
533
Proof.
  intros ??? z Hz.
534
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
535
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
536
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
537
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
538

539
540
541
542
543
544
545
546
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
547
  split; first by apply cmra_included_includedN.
548
549
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
550
551
552

(** Cancelable elements  *)
Global Instance cancelable_proper : Proper (equiv ==> iff) (@Cancelable A).
553
554
Proof. unfold Cancelable. intros x x' EQ. by setoid_rewrite EQ. Qed.
Lemma cancelable x `{!Cancelable x} y z : (x  y)  x  y  x  z  y  z.
555
556
557
558
559
560
561
Proof. rewrite !equiv_dist cmra_valid_validN. intros. by apply (cancelableN x). Qed.
Lemma discrete_cancelable x `{CMRADiscrete A}:
  ( y z, (x  y)  x  y  x  z  y  z)  Cancelable x.
Proof. intros ????. rewrite -!timeless_iff -cmra_discrete_valid_iff. auto. Qed.
Global Instance cancelable_op x y :
  Cancelable x  Cancelable y  Cancelable (x  y).
Proof.
562
  intros ?? n z z' ??. apply (cancelableN y), (cancelableN x).
563
564
565
566
567
  - eapply cmra_validN_op_r. by rewrite assoc.
  - by rewrite assoc.
  - by rewrite !assoc.
Qed.
Global Instance exclusive_cancelable (x : A) : Exclusive x  Cancelable x.
568
Proof. intros ? n z z' []%(exclusiveN_l _ x). Qed.
569
570

(** Id-free elements  *)
571
Global Instance id_free_ne n : Proper (dist n ==> iff) (@IdFree A).
572
Proof.
573
574
  intros x x' EQ%(dist_le _ 0); last lia. rewrite /IdFree.
  split=> y ?; (rewrite -EQ || rewrite EQ); eauto.
575
576
Qed.
Global Instance id_free_proper : Proper (equiv ==> iff) (@IdFree A).
577
Proof. by move=> P Q /equiv_dist /(_ 0)=> ->. Qed.
578
579
580
581
582
583
584
585
586
Lemma id_freeN_r n n' x `{!IdFree x} y : {n}x  x  y {n'} x  False.
Proof. eauto using cmra_validN_le, dist_le with lia. Qed.
Lemma id_freeN_l n n' x `{!IdFree x} y : {n}x  y  x {n'} x  False.
Proof. rewrite comm. eauto using id_freeN_r. Qed.
Lemma id_free_r x `{!IdFree x} y : x  x  y  x  False.
Proof. move=> /cmra_valid_validN ? /equiv_dist. eauto. Qed.
Lemma id_free_l x `{!IdFree x} y : x  y  x  x  False.
Proof. rewrite comm. eauto using id_free_r. Qed.
Lemma discrete_id_free x `{CMRADiscrete A}:
587
  ( y,  x  x  y  x  False)  IdFree x.
588
Proof. repeat intro. eauto using cmra_discrete_valid, cmra_discrete, timeless. Qed.
589
Global Instance id_free_op_r x y : IdFree y  Cancelable x  IdFree (x  y).
590
Proof.
591
  intros ?? z ? Hid%symmetry. revert Hid. rewrite -assoc=>/(cancelableN x) ?.
592
593
  eapply (id_free0_r _); [by eapply cmra_validN_op_r |symmetry; eauto].
Qed.
594
Global Instance id_free_op_l x y : IdFree x  Cancelable y  IdFree (x  y).
595
596
597
Proof. intros. rewrite comm. apply _. Qed.
Global Instance exclusive_id_free x : Exclusive x  IdFree x.
Proof. intros ? z ? Hid. apply (exclusiveN_l 0 x z). by rewrite Hid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
598
599
End cmra.

600
601
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
618
    intros x. destruct (cmra_pcore_mono'  x ) as (cx&->&?);
619
      eauto using ucmra_unit_least, (persistent (:A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
620
  Qed.
621
622
  Global Instance empty_cancelable : Cancelable (:A).
  Proof. intros ???. by rewrite !left_id. Qed.
623
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
625
Hint Immediate cmra_unit_total.

626
627
628

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
629
  Local Set Default Proof Using "Type*".
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
Robbert Krebbers's avatar
Robbert Krebbers committed
653
  Lemma persistent_dup_L x `{!Persistent x} : x = x  x.
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
676
  Local Set Default Proof Using "Type*".
677
678
679
680
681
682
683
684
685
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_left_id_L : LeftId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id_L : RightId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
686
687
688
689
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
690
691
  Context (op_ne :  (x : A), NonExpansive (op x)).
  Context (core_ne : NonExpansive (@core A _)).
Robbert Krebbers's avatar
Robbert Krebbers committed
692
693
694
695
696
697
698
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
699
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
700
701
702
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
703
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
704
  Lemma cmra_total_mixin : CMRAMixin A.
705
  Proof using Type*.
Robbert Krebbers's avatar
Robbert Krebbers committed
706
707
708
709
710
711
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
712
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
713
714
715
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
716

717
(** * Properties about monotone functions *)
718
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
719
Proof. repeat split; by try apply _. Qed.
720
721
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
722
723
Proof.
  split.
724
  - apply _.
725
  - move=> n x Hx /=. by apply cmra_monotone_validN, cmra_monotone_validN.
726
  - move=> x y Hxy /=. by apply cmra_monotone, cmra_monotone.
Robbert Krebbers's avatar
Robbert Krebbers committed
727
Qed.
728

729
Section cmra_monotone.
730
  Local Set Default Proof Using "Type*".
731
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
732
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
733
  Lemma cmra_monotoneN n x y : x {n} y  f x {n} f y.
734
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
735
    intros [z ->].
736
    apply cmra_included_includedN, (cmra_monotone f), cmra_included_l.
737
  Qed.
738
739
  Lemma cmra_monotone_valid x :  x   f x.
  Proof. rewrite !cmra_valid_validN; eauto using cmra_monotone_validN. Qed.
740
741
End cmra_monotone.

742
743
744
745
746
747
Instance cmra_homomorphism_id {A : cmraT} : CMRAHomomorphism (@id A).
Proof. repeat split; by try apply _. Qed.
Instance cmra_homomorphism_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAHomomorphism f  CMRAHomomorphism g  CMRAHomomorphism (g  f).
Proof.
  split.
748
  - apply _.
749
750
751
752
753
754
755
756
757
758
759
760
761
  - move=> x y /=. rewrite -(cmra_homomorphism g).
    by apply (ne_proper _), cmra_homomorphism.
Qed.

Instance cmra_homomorphism_proper {A B : cmraT} (f : A  B) :
  CMRAHomomorphism f  Proper (() ==> ()) f := λ _, ne_proper _.

Instance ucmra_homomorphism_id {A : ucmraT} : UCMRAHomomorphism (@id A).
Proof. repeat split; by try apply _. Qed.
Instance ucmra_homomorphism_compose {A B C : ucmraT} (f : A  B) (g : B  C) :
  UCMRAHomomorphism f  UCMRAHomomorphism g  UCMRAHomomorphism (g  f).
Proof. split. apply _. by rewrite /= !ucmra_homomorphism_unit. Qed.

762
763
(** Functors *)
Structure rFunctor := RFunctor {
764
  rFunctor_car : ofeT  ofeT  cmraT;
765
766
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
767
768
  rFunctor_ne A1 A2 B1 B2 :
    NonExpansive (@rFunctor_map A1 A2 B1 B2);
769
770
771
772
773
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,