plainly.v 28.5 KB
Newer Older
1
From iris.bi Require Import derived_laws_sbi big_op.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.algebra Require Import monoid.
3
Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6

Class Plainly (A : Type) := plainly : A  A.
Hint Mode Plainly ! : typeclass_instances.
7
Instance: Params (@plainly) 2 := {}.
8
Notation "■ P" := (plainly P) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

Robbert Krebbers's avatar
Robbert Krebbers committed
10
(* Mixins allow us to create instances easily without having to use Program *)
Robbert Krebbers's avatar
Robbert Krebbers committed
11
Record BiPlainlyMixin (PROP : sbi) `(Plainly PROP) := {
12
  bi_plainly_mixin_plainly_ne : NonExpansive (plainly (A:=PROP));
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
  bi_plainly_mixin_plainly_mono (P Q : PROP) : (P  Q)   P   Q;
  bi_plainly_mixin_plainly_elim_persistently (P : PROP) :  P  <pers> P;
  bi_plainly_mixin_plainly_idemp_2 (P : PROP) :  P    P;
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20 21 22 23

  bi_plainly_mixin_plainly_forall_2 {A} (Ψ : A  PROP) :
    ( a,  (Ψ a))   ( a, Ψ a);

  (* The following two laws are very similar, and indeed they hold not just
     for persistently and plainly, but for any modality defined as `M P n x :=
     ∀ y, R x y → P n y`. *)
24
  bi_plainly_mixin_persistently_impl_plainly (P Q : PROP) :
25
    ( P  <pers> Q)  <pers> ( P  Q);
26 27
  bi_plainly_mixin_plainly_impl_plainly (P Q : PROP) :
    ( P   Q)   ( P  Q);
Robbert Krebbers's avatar
Robbert Krebbers committed
28

29 30
  bi_plainly_mixin_plainly_emp_intro (P : PROP) : P   emp;
  bi_plainly_mixin_plainly_absorb (P Q : PROP) :  P  Q   P;
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32
  bi_plainly_mixin_prop_ext_2 (P Q : PROP) :  ((P - Q)  (Q - P))  P  Q;
Robbert Krebbers's avatar
Robbert Krebbers committed
33

34 35
  bi_plainly_mixin_later_plainly_1 (P : PROP) :   P    P;
  bi_plainly_mixin_later_plainly_2 (P : PROP) :   P    P;
Robbert Krebbers's avatar
Robbert Krebbers committed
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
}.

Class BiPlainly (PROP : sbi) := {
  bi_plainly_plainly :> Plainly PROP;
  bi_plainly_mixin : BiPlainlyMixin PROP bi_plainly_plainly;
}.
Hint Mode BiPlainly ! : typeclass_instances.
Arguments bi_plainly_plainly : simpl never.

Class BiPlainlyExist `{!BiPlainly PROP} :=
  plainly_exist_1 A (Ψ : A  PROP) :
     ( a, Ψ a)   a,  (Ψ a).
Arguments BiPlainlyExist : clear implicits.
Arguments BiPlainlyExist _ {_}.
Arguments plainly_exist_1 _ {_ _} _.
51
Hint Mode BiPlainlyExist ! - : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
52 53 54 55 56 57 58 59 60 61

Section plainly_laws.
  Context `{BiPlainly PROP}.
  Implicit Types P Q : PROP.

  Global Instance plainly_ne : NonExpansive (@plainly PROP _).
  Proof. eapply bi_plainly_mixin_plainly_ne, bi_plainly_mixin. Qed.

  Lemma plainly_mono P Q : (P  Q)   P   Q.
  Proof. eapply bi_plainly_mixin_plainly_mono, bi_plainly_mixin. Qed.
62
  Lemma plainly_elim_persistently P :  P  <pers> P.
Robbert Krebbers's avatar
Robbert Krebbers committed
63 64 65 66 67
  Proof. eapply bi_plainly_mixin_plainly_elim_persistently, bi_plainly_mixin. Qed.
  Lemma plainly_idemp_2 P :  P    P.
  Proof. eapply bi_plainly_mixin_plainly_idemp_2, bi_plainly_mixin. Qed.
  Lemma plainly_forall_2 {A} (Ψ : A  PROP) : ( a,  (Ψ a))   ( a, Ψ a).
  Proof. eapply bi_plainly_mixin_plainly_forall_2, bi_plainly_mixin. Qed.
68
  Lemma persistently_impl_plainly P Q : ( P  <pers> Q)  <pers> ( P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
69 70 71 72 73 74 75 76
  Proof. eapply bi_plainly_mixin_persistently_impl_plainly, bi_plainly_mixin. Qed.
  Lemma plainly_impl_plainly P Q : ( P   Q)   ( P  Q).
  Proof. eapply bi_plainly_mixin_plainly_impl_plainly, bi_plainly_mixin. Qed.
  Lemma plainly_absorb P Q :  P  Q   P.
  Proof. eapply bi_plainly_mixin_plainly_absorb, bi_plainly_mixin. Qed.
  Lemma plainly_emp_intro P : P   emp.
  Proof. eapply bi_plainly_mixin_plainly_emp_intro, bi_plainly_mixin. Qed.

77 78
  Lemma prop_ext_2 P Q :  ((P - Q)  (Q - P))  P  Q.
  Proof. eapply bi_plainly_mixin_prop_ext_2, bi_plainly_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80 81 82 83 84 85 86 87 88 89

  Lemma later_plainly_1 P :   P   ( P).
  Proof. eapply bi_plainly_mixin_later_plainly_1, bi_plainly_mixin. Qed.
  Lemma later_plainly_2 P :   P    P.
  Proof. eapply bi_plainly_mixin_later_plainly_2, bi_plainly_mixin. Qed.
End plainly_laws.

(* Derived properties and connectives *)
Class Plain `{BiPlainly PROP} (P : PROP) := plain : P   P.
Arguments Plain {_ _} _%I : simpl never.
Arguments plain {_ _} _%I {_}.
90
Hint Mode Plain + - ! : typeclass_instances.
91
Instance: Params (@Plain) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93 94 95

Definition plainly_if `{!BiPlainly PROP} (p : bool) (P : PROP) : PROP :=
  (if p then  P else P)%I.
Arguments plainly_if {_ _} !_ _%I /.
96
Instance: Params (@plainly_if) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
97 98
Typeclasses Opaque plainly_if.

99
Notation "■? p P" := (plainly_if p P) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101 102 103 104 105

(* Derived laws *)
Section plainly_derived.
Context `{BiPlainly PROP}.
Implicit Types P : PROP.

Tej Chajed's avatar
Tej Chajed committed
106 107 108
Hint Resolve pure_intro forall_intro : core.
Hint Resolve or_elim or_intro_l' or_intro_r' : core.
Hint Resolve and_intro and_elim_l' and_elim_r' : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110 111 112 113 114 115 116 117 118

Global Instance plainly_proper :
  Proper (() ==> ()) (@plainly PROP _) := ne_proper _.

Global Instance plainly_mono' : Proper (() ==> ()) (@plainly PROP _).
Proof. intros P Q; apply plainly_mono. Qed.
Global Instance plainly_flip_mono' :
  Proper (flip () ==> flip ()) (@plainly PROP _).
Proof. intros P Q; apply plainly_mono. Qed.

119
Lemma affinely_plainly_elim P : <affine>  P  P.
120
Proof. by rewrite plainly_elim_persistently /bi_affinely persistently_and_emp_elim. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
121

Ralf Jung's avatar
Ralf Jung committed
122
Lemma persistently_elim_plainly P : <pers>  P   P.
Robbert Krebbers's avatar
Robbert Krebbers committed
123 124
Proof.
  apply (anti_symm _).
Ralf Jung's avatar
Ralf Jung committed
125
  - by rewrite persistently_into_absorbingly /bi_absorbingly comm plainly_absorb.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127
  - by rewrite {1}plainly_idemp_2 plainly_elim_persistently.
Qed.
Ralf Jung's avatar
Ralf Jung committed
128 129
Lemma persistently_if_elim_plainly P p : <pers>?p  P   P.
Proof. destruct p; last done. exact: persistently_elim_plainly. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
130

Ralf Jung's avatar
Ralf Jung committed
131
Lemma plainly_persistently_elim P :  <pers> P   P.
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134 135 136 137 138 139
Proof.
  apply (anti_symm _).
  - rewrite -{1}(left_id True%I bi_and ( _)%I) (plainly_emp_intro True%I).
    rewrite -{2}(persistently_and_emp_elim P).
    rewrite !and_alt -plainly_forall_2. by apply forall_mono=> -[].
  - by rewrite {1}plainly_idemp_2 (plainly_elim_persistently P).
Qed.

Ralf Jung's avatar
Ralf Jung committed
140 141
Lemma absorbingly_elim_plainly P : <absorb>  P   P.
Proof. by rewrite -(persistently_elim_plainly P) absorbingly_elim_persistently. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
142 143 144 145

Lemma plainly_and_sep_elim P Q :  P  Q - (emp  P)  Q.
Proof. by rewrite plainly_elim_persistently persistently_and_sep_elim_emp. Qed.
Lemma plainly_and_sep_assoc P Q R :  P  (Q  R)  ( P  Q)  R.
Ralf Jung's avatar
Ralf Jung committed
146
Proof. by rewrite -(persistently_elim_plainly P) persistently_and_sep_assoc. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148
Lemma plainly_and_emp_elim P : emp   P  P.
Proof. by rewrite plainly_elim_persistently persistently_and_emp_elim. Qed.
Ralf Jung's avatar
Ralf Jung committed
149 150
Lemma plainly_into_absorbingly P :  P  <absorb> P.
Proof. by rewrite plainly_elim_persistently persistently_into_absorbingly. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152 153 154
Lemma plainly_elim P `{!Absorbing P} :  P  P.
Proof. by rewrite plainly_elim_persistently persistently_elim. Qed.

Lemma plainly_idemp_1 P :   P   P.
Ralf Jung's avatar
Ralf Jung committed
155
Proof. by rewrite plainly_into_absorbingly absorbingly_elim_plainly. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159 160 161
Lemma plainly_idemp P :   P   P.
Proof. apply (anti_symm _); auto using plainly_idemp_1, plainly_idemp_2. Qed.

Lemma plainly_intro' P Q : ( P  Q)   P   Q.
Proof. intros <-. apply plainly_idemp_2. Qed.

162
Lemma plainly_pure φ :  ⌜φ⌝ @{PROP} ⌜φ⌝.
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166 167
Proof.
  apply (anti_symm _); auto.
  - by rewrite plainly_elim_persistently persistently_pure.
  - apply pure_elim'=> Hφ.
    trans ( x : False,  True : PROP)%I; [by apply forall_intro|].
168
    rewrite plainly_forall_2. by rewrite -(pure_intro φ).
Robbert Krebbers's avatar
Robbert Krebbers committed
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
Qed.
Lemma plainly_forall {A} (Ψ : A  PROP) :  ( a, Ψ a)   a,  (Ψ a).
Proof.
  apply (anti_symm _); auto using plainly_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma plainly_exist_2 {A} (Ψ : A  PROP) : ( a,  (Ψ a))   ( a, Ψ a).
Proof. apply exist_elim=> x. by rewrite (exist_intro x). Qed.
Lemma plainly_exist `{!BiPlainlyExist PROP} {A} (Ψ : A  PROP) :
   ( a, Ψ a)   a,  (Ψ a).
Proof. apply (anti_symm _); auto using plainly_exist_1, plainly_exist_2. Qed.
Lemma plainly_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt plainly_forall. by apply forall_proper=> -[]. Qed.
Lemma plainly_or_2 P Q :  P   Q   (P  Q).
Proof. rewrite !or_alt -plainly_exist_2. by apply exist_mono=> -[]. Qed.
Lemma plainly_or `{!BiPlainlyExist PROP} P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt plainly_exist. by apply exist_proper=> -[]. Qed.
Lemma plainly_impl P Q :  (P  Q)   P   Q.
Proof.
  apply impl_intro_l; rewrite -plainly_and.
  apply plainly_mono, impl_elim with P; auto.
Qed.

192 193 194
Lemma plainly_emp_2 : emp @{PROP}  emp.
Proof. apply plainly_emp_intro. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
195 196 197 198
Lemma plainly_sep_dup P :  P   P   P.
Proof.
  apply (anti_symm _).
  - rewrite -{1}(idemp bi_and ( _)%I).
199
    by rewrite -{2}(emp_sep ( _)%I) plainly_and_sep_assoc and_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
200 201 202 203
  - by rewrite plainly_absorb.
Qed.

Lemma plainly_and_sep_l_1 P Q :  P  Q   P  Q.
204
Proof. by rewrite -{1}(emp_sep Q%I) plainly_and_sep_assoc and_elim_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
205 206 207
Lemma plainly_and_sep_r_1 P Q : P   Q  P   Q.
Proof. by rewrite !(comm _ P) plainly_and_sep_l_1. Qed.

208
Lemma plainly_True_emp :  True @{PROP}  emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
209 210 211 212
Proof. apply (anti_symm _); eauto using plainly_mono, plainly_emp_intro. Qed.
Lemma plainly_and_sep P Q :  (P  Q)   (P  Q).
Proof.
  rewrite plainly_and.
213
  rewrite -{1}plainly_idemp -plainly_and -{1}(emp_sep Q%I).
Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216
  by rewrite plainly_and_sep_assoc (comm bi_and) plainly_and_emp_elim.
Qed.

Ralf Jung's avatar
Ralf Jung committed
217
Lemma plainly_affinely_elim P :  <affine> P   P.
Robbert Krebbers's avatar
Robbert Krebbers committed
218 219
Proof. by rewrite /bi_affinely plainly_and -plainly_True_emp plainly_pure left_id. Qed.

220 221 222 223
Lemma intuitionistically_plainly_elim P :   P -  P.
Proof. rewrite intuitionistically_affinely plainly_elim_persistently //. Qed.
Lemma intuitionistically_plainly P :   P -   P.
Proof.
Ralf Jung's avatar
Ralf Jung committed
224 225
  rewrite /bi_intuitionistically plainly_affinely_elim affinely_elim.
  rewrite persistently_elim_plainly plainly_persistently_elim. done.
226 227
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
228 229 230 231 232 233 234 235 236 237 238 239
Lemma and_sep_plainly P Q :  P   Q   P   Q.
Proof.
  apply (anti_symm _); auto using plainly_and_sep_l_1.
  apply and_intro.
  - by rewrite plainly_absorb.
  - by rewrite comm plainly_absorb.
Qed.
Lemma plainly_sep_2 P Q :  P   Q   (P  Q).
Proof. by rewrite -plainly_and_sep plainly_and -and_sep_plainly. Qed.
Lemma plainly_sep `{BiPositive PROP} P Q :  (P  Q)   P   Q.
Proof.
  apply (anti_symm _); auto using plainly_sep_2.
Ralf Jung's avatar
Ralf Jung committed
240
  rewrite -(plainly_affinely_elim (_  _)%I) affinely_sep -and_sep_plainly. apply and_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  - by rewrite (affinely_elim_emp Q) right_id affinely_elim.
  - by rewrite (affinely_elim_emp P) left_id affinely_elim.
Qed.

Lemma plainly_wand P Q :  (P - Q)   P -  Q.
Proof. apply wand_intro_r. by rewrite plainly_sep_2 wand_elim_l. Qed.

Lemma plainly_entails_l P Q : (P   Q)  P   Q  P.
Proof. intros; rewrite -plainly_and_sep_l_1; auto. Qed.
Lemma plainly_entails_r P Q : (P   Q)  P  P   Q.
Proof. intros; rewrite -plainly_and_sep_r_1; auto. Qed.

Lemma plainly_impl_wand_2 P Q :  (P - Q)   (P  Q).
Proof.
  apply plainly_intro', impl_intro_r.
256
  rewrite -{2}(emp_sep P%I) plainly_and_sep_assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
257 258 259 260 261 262
  by rewrite (comm bi_and) plainly_and_emp_elim wand_elim_l.
Qed.

Lemma impl_wand_plainly_2 P Q : ( P - Q)  ( P  Q).
Proof. apply impl_intro_l. by rewrite plainly_and_sep_l_1 wand_elim_r. Qed.

263
Lemma impl_wand_affinely_plainly P Q : ( P  Q)  (<affine>  P - Q).
Ralf Jung's avatar
Ralf Jung committed
264
Proof. by rewrite -(persistently_elim_plainly P) impl_wand_intuitionistically. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
265

266 267 268 269 270 271 272 273
Lemma persistently_wand_affinely_plainly P Q :
  (<affine>  P - <pers> Q)  <pers> (<affine>  P - Q).
Proof. rewrite -!impl_wand_affinely_plainly. apply persistently_impl_plainly. Qed.

Lemma plainly_wand_affinely_plainly P Q :
  (<affine>  P -  Q)   (<affine>  P - Q).
Proof. rewrite -!impl_wand_affinely_plainly. apply plainly_impl_plainly. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
274 275 276
Section plainly_affine_bi.
  Context `{BiAffine PROP}.

277
  Lemma plainly_emp :  emp @{PROP} emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  Proof. by rewrite -!True_emp plainly_pure. Qed.

  Lemma plainly_and_sep_l P Q :  P  Q   P  Q.
  Proof.
    apply (anti_symm ());
      eauto using plainly_and_sep_l_1, sep_and with typeclass_instances.
  Qed.
  Lemma plainly_and_sep_r P Q : P   Q  P   Q.
  Proof. by rewrite !(comm _ P) plainly_and_sep_l. Qed.

  Lemma plainly_impl_wand P Q :  (P  Q)   (P - Q).
  Proof.
    apply (anti_symm ()); auto using plainly_impl_wand_2.
    apply plainly_intro', wand_intro_l.
    by rewrite -plainly_and_sep_r plainly_elim impl_elim_r.
  Qed.

  Lemma impl_wand_plainly P Q : ( P  Q)  ( P - Q).
  Proof.
    apply (anti_symm ()). by rewrite -impl_wand_1. by rewrite impl_wand_plainly_2.
  Qed. 
End plainly_affine_bi.

(* Conditional plainly *)
Global Instance plainly_if_ne p : NonExpansive (@plainly_if PROP _ p).
Proof. solve_proper. Qed.
Global Instance plainly_if_proper p : Proper (() ==> ()) (@plainly_if PROP _ p).
Proof. solve_proper. Qed.
Global Instance plainly_if_mono' p : Proper (() ==> ()) (@plainly_if PROP _ p).
Proof. solve_proper. Qed.
Global Instance plainly_if_flip_mono' p :
  Proper (flip () ==> flip ()) (@plainly_if PROP _ p).
Proof. solve_proper. Qed.

Lemma plainly_if_mono p P Q : (P  Q)  ?p P  ?p Q.
Proof. by intros ->. Qed.

315
Lemma plainly_if_pure p φ : ?p ⌜φ⌝ @{PROP} ⌜φ⌝.
Robbert Krebbers's avatar
Robbert Krebbers committed
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
Proof. destruct p; simpl; auto using plainly_pure. Qed.
Lemma plainly_if_and p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using plainly_and. Qed.
Lemma plainly_if_or_2 p P Q : ?p P  ?p Q  ?p (P  Q).
Proof. destruct p; simpl; auto using plainly_or_2. Qed.
Lemma plainly_if_or `{!BiPlainlyExist PROP} p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using plainly_or. Qed.
Lemma plainly_if_exist_2 {A} p (Ψ : A  PROP) : ( a, ?p (Ψ a))  ?p ( a, Ψ a).
Proof. destruct p; simpl; auto using plainly_exist_2. Qed.
Lemma plainly_if_exist `{!BiPlainlyExist PROP} {A} p (Ψ : A  PROP) :
  ?p ( a, Ψ a)   a, ?p (Ψ a).
Proof. destruct p; simpl; auto using plainly_exist. Qed.
Lemma plainly_if_sep_2 `{!BiPositive PROP} p P Q : ?p P  ?p Q   ?p (P  Q).
Proof. destruct p; simpl; auto using plainly_sep_2. Qed.

Lemma plainly_if_idemp p P : ?p ?p P  ?p P.
Proof. destruct p; simpl; auto using plainly_idemp. Qed.

(* Properties of plain propositions *)
Global Instance Plain_proper : Proper (() ==> iff) (@Plain PROP _).
Proof. solve_proper. Qed.

Lemma plain_plainly_2 P `{!Plain P} : P   P.
Proof. done. Qed.
Lemma plain_plainly P `{!Plain P, !Absorbing P} :  P  P.
Proof. apply (anti_symm _), plain_plainly_2, _. by apply plainly_elim. Qed.
Lemma plainly_intro P Q `{!Plain P} : (P  Q)  P   Q.
Proof. by intros <-. Qed.

(* Typeclass instances *)
Global Instance plainly_absorbing P : Absorbing ( P).
Proof. by rewrite /Absorbing /bi_absorbingly comm plainly_absorb. Qed.
Global Instance plainly_if_absorbing P p :
  Absorbing P  Absorbing (plainly_if p P).
Proof. intros; destruct p; simpl; apply _. Qed.

(* Not an instance, see the bottom of this file *)
Lemma plain_persistent P : Plain P  Persistent P.
Proof. intros. by rewrite /Persistent -plainly_elim_persistently. Qed.

(* Not an instance, see the bottom of this file *)
Lemma impl_persistent P Q :
  Absorbing P  Plain P  Persistent Q  Persistent (P  Q).
Proof.
  intros. by rewrite /Persistent {2}(plain P) -persistently_impl_plainly
Ralf Jung's avatar
Ralf Jung committed
361
                     -(persistent Q) (plainly_into_absorbingly P) absorbing.
Robbert Krebbers's avatar
Robbert Krebbers committed
362 363 364
Qed.

Global Instance plainly_persistent P : Persistent ( P).
Ralf Jung's avatar
Ralf Jung committed
365
Proof. by rewrite /Persistent persistently_elim_plainly. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
366 367 368 369

Global Instance wand_persistent P Q :
  Plain P  Persistent Q  Absorbing Q  Persistent (P - Q).
Proof.
370
  intros. rewrite /Persistent {2}(plain P). trans (<pers> ( P  Q))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
371 372 373 374 375
  - rewrite -persistently_impl_plainly impl_wand_affinely_plainly -(persistent Q).
    by rewrite affinely_plainly_elim.
  - apply persistently_mono, wand_intro_l. by rewrite sep_and impl_elim_r.
Qed.

376 377 378
Global Instance limit_preserving_Plain {A:ofeT} `{Cofe A} (Φ : A  PROP) :
  NonExpansive Φ  LimitPreserving (λ x, Plain (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379

380
(* Instances for big operators *)
Robbert Krebbers's avatar
Robbert Krebbers committed
381 382 383 384 385 386 387 388 389 390
Global Instance plainly_sep_weak_homomorphism `{!BiPositive PROP, !BiAffine PROP} :
  WeakMonoidHomomorphism bi_sep bi_sep () (@plainly PROP _).
Proof. split; try apply _. apply plainly_sep. Qed.
Global Instance plainly_sep_entails_weak_homomorphism :
  WeakMonoidHomomorphism bi_sep bi_sep (flip ()) (@plainly PROP _).
Proof. split; try apply _. intros P Q; by rewrite plainly_sep_2. Qed.
Global Instance plainly_sep_entails_homomorphism `{!BiAffine PROP} :
  MonoidHomomorphism bi_sep bi_sep (flip ()) (@plainly PROP _).
Proof. split. apply _. simpl. rewrite plainly_emp. done. Qed.

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
Global Instance plainly_sep_homomorphism `{BiAffine PROP} :
  MonoidHomomorphism bi_sep bi_sep () (@plainly PROP _).
Proof. split. apply _. apply plainly_emp. Qed.
Global Instance plainly_and_homomorphism :
  MonoidHomomorphism bi_and bi_and () (@plainly PROP _).
Proof. split; [split|]; try apply _. apply plainly_and. apply plainly_pure. Qed.
Global Instance plainly_or_homomorphism `{!BiPlainlyExist PROP} :
  MonoidHomomorphism bi_or bi_or () (@plainly PROP _).
Proof. split; [split|]; try apply _. apply plainly_or. apply plainly_pure. Qed.

Lemma big_sepL_plainly `{!BiAffine PROP} {A} (Φ : nat  A  PROP) l :
   ([ list] kx  l, Φ k x)  [ list] kx  l,  (Φ k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_andL_plainly {A} (Φ : nat  A  PROP) l :
   ([ list] kx  l, Φ k x)  [ list] kx  l,  (Φ k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_orL_plainly `{!BiPlainlyExist PROP} {A} (Φ : nat  A  PROP) l :
   ([ list] kx  l, Φ k x)  [ list] kx  l,  (Φ k x).
Proof. apply (big_opL_commute _). Qed.

Lemma big_sepL2_plainly `{!BiAffine PROP} {A B} (Φ : nat  A  B  PROP) l1 l2 :
   ([ list] ky1;y2  l1;l2, Φ k y1 y2)
   [ list] ky1;y2  l1;l2,  (Φ k y1 y2).
Proof. by rewrite !big_sepL2_alt plainly_and plainly_pure big_sepL_plainly. Qed.

Lemma big_sepM_plainly `{BiAffine PROP, Countable K} {A} (Φ : K  A  PROP) m :
   ([ map] kx  m, Φ k x)  [ map] kx  m,  (Φ k x).
Proof. apply (big_opM_commute _). Qed.

Lemma big_sepM2_plainly `{BiAffine PROP, Countable K} {A B} (Φ : K  A  B  PROP) m1 m2 :
   ([ map] kx1;x2  m1;m2, Φ k x1 x2)  [ map] kx1;x2  m1;m2,  (Φ k x1 x2).
Proof. by rewrite /big_sepM2 plainly_and plainly_pure big_sepM_plainly. Qed.

Lemma big_sepS_plainly `{BiAffine PROP, Countable A} (Φ : A  PROP) X :
   ([ set] y  X, Φ y)  [ set] y  X,  (Φ y).
Proof. apply (big_opS_commute _). Qed.

Lemma big_sepMS_plainly `{BiAffine PROP, Countable A} (Φ : A  PROP) X :
   ([ mset] y  X, Φ y)  [ mset] y  X,  (Φ y).
Proof. apply (big_opMS_commute _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
431 432

(* Plainness instances *)
433
Global Instance pure_plain φ : Plain (PROP:=PROP) ⌜φ⌝.
Robbert Krebbers's avatar
Robbert Krebbers committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
Proof. by rewrite /Plain plainly_pure. Qed.
Global Instance emp_plain : Plain (PROP:=PROP) emp.
Proof. apply plainly_emp_intro. Qed.
Global Instance and_plain P Q : Plain P  Plain Q  Plain (P  Q).
Proof. intros. by rewrite /Plain plainly_and -!plain. Qed.
Global Instance or_plain P Q : Plain P  Plain Q  Plain (P  Q).
Proof. intros. by rewrite /Plain -plainly_or_2 -!plain. Qed.
Global Instance forall_plain {A} (Ψ : A  PROP) :
  ( x, Plain (Ψ x))  Plain ( x, Ψ x).
Proof.
  intros. rewrite /Plain plainly_forall. apply forall_mono=> x. by rewrite -plain.
Qed.
Global Instance exist_plain {A} (Ψ : A  PROP) :
  ( x, Plain (Ψ x))  Plain ( x, Ψ x).
Proof.
  intros. rewrite /Plain -plainly_exist_2. apply exist_mono=> x. by rewrite -plain.
Qed.

Global Instance impl_plain P Q : Absorbing P  Plain P  Plain Q  Plain (P  Q).
Proof.
  intros. by rewrite /Plain {2}(plain P) -plainly_impl_plainly -(plain Q)
Ralf Jung's avatar
Ralf Jung committed
455
                     (plainly_into_absorbingly P) absorbing.
Robbert Krebbers's avatar
Robbert Krebbers committed
456 457 458 459 460 461 462 463 464 465 466 467 468 469
Qed.
Global Instance wand_plain P Q :
  Plain P  Plain Q  Absorbing Q  Plain (P - Q).
Proof.
  intros. rewrite /Plain {2}(plain P). trans ( ( P  Q))%I.
  - rewrite -plainly_impl_plainly impl_wand_affinely_plainly -(plain Q).
    by rewrite affinely_plainly_elim.
  - apply plainly_mono, wand_intro_l. by rewrite sep_and impl_elim_r.
Qed.
Global Instance sep_plain P Q : Plain P  Plain Q  Plain (P  Q).
Proof. intros. by rewrite /Plain -plainly_sep_2 -!plain. Qed.

Global Instance plainly_plain P : Plain ( P).
Proof. by rewrite /Plain plainly_idemp. Qed.
470
Global Instance persistently_plain P : Plain P  Plain (<pers> P).
Robbert Krebbers's avatar
Robbert Krebbers committed
471
Proof.
Ralf Jung's avatar
Ralf Jung committed
472
  rewrite /Plain=> HP. rewrite {1}HP plainly_persistently_elim persistently_elim_plainly //.
Robbert Krebbers's avatar
Robbert Krebbers committed
473
Qed.
474
Global Instance affinely_plain P : Plain P  Plain (<affine> P).
Robbert Krebbers's avatar
Robbert Krebbers committed
475
Proof. rewrite /bi_affinely. apply _. Qed.
476 477
Global Instance intuitionistically_plain P : Plain P  Plain ( P).
Proof. rewrite /bi_intuitionistically. apply _. Qed.
478
Global Instance absorbingly_plain P : Plain P  Plain (<absorb> P).
Robbert Krebbers's avatar
Robbert Krebbers committed
479 480 481 482 483
Proof. rewrite /bi_absorbingly. apply _. Qed.
Global Instance from_option_plain {A} P (Ψ : A  PROP) (mx : option A) :
  ( x, Plain (Ψ x))  Plain P  Plain (from_option Ψ P mx).
Proof. destruct mx; apply _. Qed.

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
Global Instance big_sepL_nil_plain `{!BiAffine PROP} {A} (Φ : nat  A  PROP) :
  Plain ([ list] kx  [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_sepL_plain `{!BiAffine PROP} {A} (Φ : nat  A  PROP) l :
  ( k x, Plain (Φ k x))  Plain ([ list] kx  l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
Global Instance big_andL_nil_plain {A} (Φ : nat  A  PROP) :
  Plain ([ list] kx  [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_andL_plain {A} (Φ : nat  A  PROP) l :
  ( k x, Plain (Φ k x))  Plain ([ list] kx  l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
Global Instance big_orL_nil_plain {A} (Φ : nat  A  PROP) :
  Plain ([ list] kx  [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_orL_plain {A} (Φ : nat  A  PROP) l :
  ( k x, Plain (Φ k x))  Plain ([ list] kx  l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.

Global Instance big_sepL2_nil_plain `{!BiAffine PROP} {A B} (Φ : nat  A  B  PROP) :
  Plain ([ list] ky1;y2  []; [], Φ k y1 y2).
Proof. simpl; apply _. Qed.
Global Instance big_sepL2_plain `{!BiAffine PROP} {A B} (Φ : nat  A  B  PROP) l1 l2 :
  ( k x1 x2, Plain (Φ k x1 x2)) 
  Plain ([ list] ky1;y2  l1;l2, Φ k y1 y2).
Proof. rewrite big_sepL2_alt. apply _. Qed.

Global Instance big_sepM_empty_plain `{BiAffine PROP, Countable K} {A} (Φ : K  A  PROP) :
  Plain ([ map] kx  , Φ k x).
Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
Global Instance big_sepM_plain `{BiAffine PROP, Countable K} {A} (Φ : K  A  PROP) m :
  ( k x, Plain (Φ k x))  Plain ([ map] kx   m, Φ k x).
Proof. intros. apply (big_sepL_plain _ _)=> _ [??]; apply _. Qed.

Global Instance big_sepM2_empty_plain `{BiAffine PROP, Countable K}
    {A B} (Φ : K  A  B  PROP) :
  Plain ([ map] kx1;x2  ;, Φ k x1 x2).
Proof. rewrite /big_sepM2 map_zip_with_empty. apply _. Qed.
Global Instance big_sepM2_plain `{BiAffine PROP, Countable K}
    {A B} (Φ : K  A  B  PROP) m1 m2 :
  ( k x1 x2, Plain (Φ k x1 x2)) 
  Plain ([ map] kx1;x2  m1;m2, Φ k x1 x2).
Proof. intros. rewrite /big_sepM2. apply _. Qed.

Global Instance big_sepS_empty_plain `{BiAffine PROP, Countable A} (Φ : A  PROP) :
  Plain ([ set] x  , Φ x).
Proof. rewrite /big_opS elements_empty. apply _. Qed.
Global Instance big_sepS_plain `{BiAffine PROP, Countable A} (Φ : A  PROP) X :
  ( x, Plain (Φ x))  Plain ([ set] x  X, Φ x).
Proof. rewrite /big_opS. apply _. Qed.

Global Instance big_sepMS_empty_plain `{BiAffine PROP, Countable A} (Φ : A  PROP) :
  Plain ([ mset] x  , Φ x).
Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed.
Global Instance big_sepMS_plain `{BiAffine PROP, Countable A} (Φ : A  PROP) X :
  ( x, Plain (Φ x))  Plain ([ mset] x  X, Φ x).
Proof. rewrite /big_opMS. apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
542
(* Interaction with equality *)
543
Lemma plainly_internal_eq {A:ofeT} (a b : A) :  (a  b) @{PROP} a  b.
Robbert Krebbers's avatar
Robbert Krebbers committed
544 545 546 547 548 549 550
Proof.
  apply (anti_symm ()).
  { by rewrite plainly_elim. }
  apply (internal_eq_rewrite' a b (λ  b,  (a  b))%I); [solve_proper|done|].
  rewrite -(internal_eq_refl True%I a) plainly_pure; auto.
Qed.

551 552 553 554 555 556 557 558 559
Lemma prop_ext P Q : P  Q   (P - Q).
Proof.
  apply (anti_symm ()); last exact: prop_ext_2.
  apply (internal_eq_rewrite' P Q (λ Q,  (P - Q))%I);
    [ solve_proper | done | ].
  rewrite (plainly_emp_intro (P  Q)%I).
  apply plainly_mono, wand_iff_refl.
Qed.

560
Lemma plainly_alt P :  P  <affine> P  emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
561
Proof.
Ralf Jung's avatar
Ralf Jung committed
562
  rewrite -plainly_affinely_elim. apply (anti_symm ()).
563
  - rewrite prop_ext. apply plainly_mono, and_intro; apply wand_intro_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
564 565 566 567 568 569 570 571 572
    + by rewrite affinely_elim_emp left_id.
    + by rewrite left_id.
  - rewrite internal_eq_sym (internal_eq_rewrite _ _ plainly).
    by rewrite -plainly_True_emp plainly_pure True_impl.
Qed.

Lemma plainly_alt_absorbing P `{!Absorbing P} :  P  P  True.
Proof.
  apply (anti_symm ()).
573
  - rewrite prop_ext. apply plainly_mono, and_intro; apply wand_intro_l; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
574 575 576 577 578 579 580
  - rewrite internal_eq_sym (internal_eq_rewrite _ _ plainly).
    by rewrite plainly_pure True_impl.
Qed.

Lemma plainly_True_alt P :  (True - P)  P  True.
Proof.
  apply (anti_symm ()).
581
  - rewrite prop_ext. apply plainly_mono, and_intro; apply wand_intro_l; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    by rewrite wand_elim_r.
  - rewrite internal_eq_sym (internal_eq_rewrite _ _
      (λ Q,  (True - Q))%I ltac:(shelve)); last solve_proper.
    by rewrite -entails_wand // -(plainly_emp_intro True%I) True_impl.
Qed.

(* Interaction with ▷ *)
Lemma later_plainly P :   P    P.
Proof. apply (anti_symm _); auto using later_plainly_1, later_plainly_2. Qed.
Lemma laterN_plainly n P : ^n  P   ^n P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite IH later_plainly. Qed.

Lemma later_plainly_if p P :  ?p P  ?p  P.
Proof. destruct p; simpl; auto using later_plainly. Qed.
Lemma laterN_plainly_if n p P : ^n ?p P  ?p (^n P).
Proof. destruct p; simpl; auto using laterN_plainly. Qed.

Lemma except_0_plainly_1 P :   P    P.
Proof. by rewrite /sbi_except_0 -plainly_or_2 -later_plainly plainly_pure. Qed.
Lemma except_0_plainly `{!BiPlainlyExist PROP} P :   P    P.
Proof. by rewrite /sbi_except_0 plainly_or -later_plainly plainly_pure. Qed.

Global Instance internal_eq_plain {A : ofeT} (a b : A) :
605
  Plain (PROP:=PROP) (a  b).
Robbert Krebbers's avatar
Robbert Krebbers committed
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
Proof. by intros; rewrite /Plain plainly_internal_eq. Qed.

Global Instance later_plain P : Plain P  Plain ( P).
Proof. intros. by rewrite /Plain -later_plainly {1}(plain P). Qed.
Global Instance laterN_plain n P : Plain P  Plain (^n P).
Proof. induction n; apply _. Qed.
Global Instance except_0_plain P : Plain P  Plain ( P).
Proof. rewrite /sbi_except_0; apply _. Qed.

Global Instance plainly_timeless P  `{!BiPlainlyExist PROP} :
  Timeless P  Timeless ( P).
Proof.
  intros. rewrite /Timeless /sbi_except_0 later_plainly_1.
  by rewrite (timeless P) /sbi_except_0 plainly_or {1}plainly_elim.
Qed.
End plainly_derived.

(* When declared as an actual instance, [plain_persistent] will cause
failing proof searches to take exponential time, as Coq will try to
apply it the instance at any node in the proof search tree.

To avoid that, we declare it using a [Hint Immediate], so that it will
only be used at the leaves of the proof search tree, i.e. when the
premise of the hint can be derived from just the current context. *)
Hint Immediate plain_persistent : typeclass_instances.

(* Not defined using an ordinary [Instance] because the default
[class_apply @impl_persistent] shelves the [BiPlainly] premise, making proof
search for the other premises fail. See the proof of [coreP_persistent] for an
example where it would fail with a regular [Instance].*)
Hint Extern 4 (Persistent (_  _)) => eapply @impl_persistent : typeclass_instances.