ofe.v 48.1 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26 27 28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32 33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
Set Primitive Projections.
37
Record OfeMixin A `{Equiv A, Dist A} := {
38
  mixin_equiv_dist x y : x  y   n, x {n} y;
39
  mixin_dist_equivalence n : Equivalence (dist n);
40
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
41
}.
42
Unset Primitive Projections.
Robbert Krebbers's avatar
Robbert Krebbers committed
43 44

(** Bundeled version *)
45 46 47 48 49
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
50
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
51
}.
52 53 54 55 56 57 58 59 60
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
different places (see for example the constructors [CMRAT] and [UCMRAT] in the
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

87
(** Lifting properties from the mixin *)
88 89
Section ofe_mixin.
  Context {A : ofeT}.
90
  Implicit Types x y : A.
91
  Lemma equiv_dist x y : x  y   n, x {n} y.
92
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
93
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
94
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
95
  Lemma dist_S n x y : x {S n} y  x {n} y.
96 97
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
98

Robbert Krebbers's avatar
Robbert Krebbers committed
99 100
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

101
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
102
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
103
   more sense. *)
104 105 106
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.
107
Instance: Params (@Timeless) 1.
108

109
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.
110
Hint Mode Discrete ! : typeclass_instances.
111 112 113 114 115 116 117 118 119

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

120
Program Definition chain_map {A B : ofeT} (f : A  B)
121
    `{!NonExpansive f} (c : chain A) : chain B :=
122 123 124
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

125 126 127 128 129 130
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
131

132
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
133 134 135
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

136 137 138 139 140 141 142 143
Program Definition chain_const {A : ofeT} (a : A) : chain A :=
  {| chain_car n := a |}.
Next Obligation. by intros A a n i _. Qed.

Lemma compl_chain_const {A : ofeT} `{!Cofe A} (a : A) :
  compl (chain_const a)  a.
Proof. apply equiv_dist=>n. by rewrite conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
144
(** General properties *)
145
Section ofe.
146
  Context {A : ofeT}.
147
  Implicit Types x y : A.
148
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150
  Proof.
    split.
151 152
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
153
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
154
  Qed.
155
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
158 159
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  Qed.
161
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
162
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
164 165 166
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
167 168 169
  Global Instance Timeless_proper : Proper (() ==> iff) (@Timeless A).
  Proof. intros x y Hxy. rewrite /Timeless. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  Proof. induction 2; eauto using dist_S. Qed.
172 173
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
174 175
  Instance ne_proper {B : ofeT} (f : A  B) `{!NonExpansive f} :
    Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
177
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C) `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
178 179 180
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
182
  Qed.
183

184
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
185 186 187 188
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
189

190 191
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
193
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
194 195 196 197
  Lemma timeless_iff_0 n (x : A) `{!Timeless x} y : x {0} y  x {n} y.
  Proof.
    split=> ?. by apply equiv_dist, (timeless _). eauto using dist_le with lia.
  Qed.
198
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
199

200
(** Contractive functions *)
201
Definition dist_later `{Dist A} (n : nat) (x y : A) : Prop :=
202
  match n with 0 => True | S n => x {n} y end.
203
Arguments dist_later _ _ !_ _ _ /.
204

205
Global Instance dist_later_equivalence (A : ofeT) n : Equivalence (@dist_later A _ n).
206 207
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

208 209 210
Lemma dist_dist_later {A : ofeT} n (x y : A) : dist n x y  dist_later n x y.
Proof. intros Heq. destruct n; first done. exact: dist_S. Qed.

211 212 213 214 215 216 217 218 219 220 221
Lemma dist_later_dist {A : ofeT} n (x y : A) : dist_later (S n) x y  dist n x y.
Proof. done. Qed.

(* We don't actually need this lemma (as our tactics deal with this through
   other means), but technically speaking, this is the reason why
   pre-composing a non-expansive function to a contractive function
   preserves contractivity. *)
Lemma ne_dist_later {A B : ofeT} (f : A  B) :
  NonExpansive f   n, Proper (dist_later n ==> dist_later n) f.
Proof. intros Hf [|n]; last exact: Hf. hnf. by intros. Qed.

222
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
223

224
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
225 226
Proof. by intros n y1 y2. Qed.

227
Section contractive.
228
  Local Set Default Proof Using "Type*".
229 230 231 232
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
233
  Proof. by apply (_ : Contractive f). Qed.
234
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
235
  Proof. intros. by apply (_ : Contractive f). Qed.
236

237 238
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
239 240 241 242
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

243 244
Ltac f_contractive :=
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
245 246 247
  | |- ?f _ {_} ?f _ => simple apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (_ ==> dist_later _ ==> _) f)
248 249
  end;
  try match goal with
250
  | |- @dist_later ?A _ ?n ?x ?y =>
251
         destruct n as [|n]; [exact I|change (@dist A _ n x y)]
252
  end;
Robbert Krebbers's avatar
Robbert Krebbers committed
253
  try simple apply reflexivity.
254

Robbert Krebbers's avatar
Robbert Krebbers committed
255 256
Ltac solve_contractive :=
  solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
Robbert Krebbers's avatar
Robbert Krebbers committed
257

Robbert Krebbers's avatar
Robbert Krebbers committed
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
(** Limit preserving predicates *)
Class LimitPreserving `{!Cofe A} (P : A  Prop) : Prop :=
  limit_preserving (c : chain A) : ( n, P (c n))  P (compl c).
Hint Mode LimitPreserving + + ! : typeclass_instances.

Section limit_preserving.
  Context `{Cofe A}.
  (* These are not instances as they will never fire automatically...
     but they can still be helpful in proving things to be limit preserving. *)

  Lemma limit_preserving_ext (P Q : A  Prop) :
    ( x, P x  Q x)  LimitPreserving P  LimitPreserving Q.
  Proof. intros HP Hlimit c ?. apply HP, Hlimit=> n; by apply HP. Qed.

  Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P).
  Proof. intros c HP. apply (HP 0). Qed.

  Lemma limit_preserving_timeless (P : A  Prop) :
    Proper (dist 0 ==> impl) P  LimitPreserving P.
  Proof. intros PH c Hc. by rewrite (conv_compl 0). Qed.

  Lemma limit_preserving_and (P1 P2 : A  Prop) :
    LimitPreserving P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof. intros Hlim1 Hlim2 c Hc. split. apply Hlim1, Hc. apply Hlim2, Hc. Qed.

  Lemma limit_preserving_impl (P1 P2 : A  Prop) :
    Proper (dist 0 ==> impl) P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof.
    intros Hlim1 Hlim2 c Hc HP1. apply Hlim2=> n; apply Hc.
    eapply Hlim1, HP1. apply dist_le with n; last lia. apply (conv_compl n).
  Qed.

  Lemma limit_preserving_forall {B} (P : B  A  Prop) :
    ( y, LimitPreserving (P y)) 
    LimitPreserving (λ x,  y, P y x).
  Proof. intros Hlim c Hc y. by apply Hlim. Qed.
End limit_preserving.

Robbert Krebbers's avatar
Robbert Krebbers committed
298
(** Fixpoint *)
299
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
300
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Next Obligation.
302
  intros A ? f ? n.
303
  induction n as [|n IH]=> -[|i] //= ?; try omega.
304 305
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Qed.
307

308
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
309
  `{!Contractive f} : A := compl (fixpoint_chain f).
310 311 312
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
313 314

Section fixpoint.
315
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
316

317
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  Proof.
319 320
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
321
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
  Qed.
323 324 325

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
326 327 328
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
329 330
  Qed.

331
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
332
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
  Proof.
334
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
335
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
336 337
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
338
  Qed.
339 340
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
342 343

  Lemma fixpoint_ind (P : A  Prop) :
344
    Proper (() ==> impl) P 
345
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
346
    LimitPreserving P 
347 348 349 350
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
Robbert Krebbers's avatar
Robbert Krebbers committed
351 352
    { intros n. rewrite /chcar. induction n as [|n IH]=> -[|i] //=;
        eauto using contractive_0, contractive_S with omega. }
353
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
Robbert Krebbers's avatar
Robbert Krebbers committed
354 355 356 357
    assert (f fp2  fp2).
    { apply equiv_dist=>n. rewrite /fp2 (conv_compl n) /= /chcar.
      induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S. }
    rewrite -(fixpoint_unique fp2) //.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
    apply Hlim=> n /=. by apply Nat_iter_ind.
359
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
360 361
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
362

363 364 365
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
366

367
Section fixpointK.
368
  Local Set Default Proof Using "Type*".
369
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
  Context {f_contractive : Contractive (Nat.iter k f)} {f_ne : NonExpansive f}.
  (* Note than f_ne is crucial here:  there are functions f such that f^2 is contractive,
     but f is not non-expansive.
     Consider for example f: SPred → SPred (where SPred is "downclosed sets of natural numbers").
     Define f (using informative excluded middle) as follows:
     f(N) = N  (where N is the set of all natural numbers)
     f({0, ..., n}) = {0, ... n-1}  if n is even (so n-1 is at least -1, in which case we return the empty set)
     f({0, ..., n}) = {0, ..., n+2} if n is odd
     In other words, if we consider elements of SPred as ordinals, then we decreaste odd finite
     ordinals by 1 and increase even finite ordinals by 2.
     f is not non-expansive:  Consider f({0}) = ∅ and f({0,1}) = f({0,1,2,3}).
     The arguments are clearly 0-equal, but the results are not.

     Now consider g := f^2. We have
     g(N) = N
     g({0, ..., n}) = {0, ... n+1}  if n is even
     g({0, ..., n}) = {0, ..., n+4} if n is odd
     g is contractive.  All outputs contain 0, so they are all 0-equal.
     Now consider two n-equal inputs. We have to show that the outputs are n+1-equal.
     Either they both do not contain n in which case they have to be fully equal and
     hence so are the results.  Or else they both contain n, so the results will
     both contain n+1, so the results are n+1-equal.
   *)
393 394

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
395
  Local Existing Instance f_proper.
396

397
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
398
  Proof.
399 400
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
401 402
  Qed.

403
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
404
  Proof.
405 406
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
407 408
  Qed.

409
  Section fixpointK_ne.
410
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
411
    Context {g_ne : NonExpansive g}.
412

413
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
414
    Proof.
415 416 417
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
418 419
    Qed.

420 421 422
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
Ralf Jung's avatar
Ralf Jung committed
423 424 425 426

  Lemma fixpointK_ind (P : A  Prop) :
    Proper (() ==> impl) P 
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
427
    LimitPreserving P 
Ralf Jung's avatar
Ralf Jung committed
428 429
    P (fixpointK k f).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
    intros. rewrite /fixpointK. apply fixpoint_ind; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
431
    intros; apply Nat_iter_ind; auto.
Ralf Jung's avatar
Ralf Jung committed
432
  Qed.
433
End fixpointK.
434

Robbert Krebbers's avatar
Robbert Krebbers committed
435
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
436
Section fixpointAB.
437 438
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
480
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
481

Ralf Jung's avatar
Ralf Jung committed
482
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
514
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
515

516
(** Function space *)
517
(* We make [ofe_fun] a definition so that we can register it as a canonical
518
structure. *)
519
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
520

521 522 523 524 525
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
526 527 528 529 530 531 532 533 534 535
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
536
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
537

538 539 540 541 542 543 544 545 546
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
547
Notation "A -c> B" :=
548 549
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
550 551
  Inhabited (A -c> B) := populate (λ _, inhabitant).

552
(** Non-expansive function space *)
553 554
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
555
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
556 557
}.
Arguments CofeMor {_ _} _ {_}.
558 559
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
560

561 562 563 564
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

565 566 567 568 569 570 571
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
572 573
  Proof.
    split.
574
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
575
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
576
    - intros n; split.
577 578
      + by intros f x.
      + by intros f g ? x.
579
      + by intros f g h ?? x; trans (g x).
580
    - by intros n f g ? x; apply dist_S.
581
  Qed.
582 583 584 585 586 587 588 589 590 591 592
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
Jacques-Henri Jourdan's avatar
Typo  
Jacques-Henri Jourdan committed
593
  Global Program Instance ofe_mor_cofe `{Cofe B} : Cofe ofe_morC :=
594 595 596 597 598
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
599

600 601 602
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
603 604 605
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
606
  Proof. done. Qed.
607
End ofe_mor.
608

609
Arguments ofe_morC : clear implicits.
610
Notation "A -n> B" :=
611 612
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
613
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
614

615
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
616 617
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
618
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
619
Instance: Params (@cconst) 2.
620

Robbert Krebbers's avatar
Robbert Krebbers committed
621 622 623 624 625
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
626
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
627
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
628

Ralf Jung's avatar
Ralf Jung committed
629
(* Function space maps *)
630
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
631
  (h : A -n> B) : A' -n> B' := g  h  f.
632 633
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
634
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
635

636 637
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
638 639
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
640
Proof.
641
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
642
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
643 644
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
645
(** unit *)
646 647
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
648
  Definition unit_ofe_mixin : OfeMixin unit.
649
  Proof. by repeat split; try exists 0. Qed.
650
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
651

652 653
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
654 655

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
656
  Proof. done. Qed.
657
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
658 659

(** Product *)
660
Section product.
661
  Context {A B : ofeT}.
662 663 664

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
665 666 667
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
668
  Definition prod_ofe_mixin : OfeMixin (A * B).
669 670
  Proof.
    split.
671
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
672
      rewrite !equiv_dist; naive_solver.
673 674
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
675
  Qed.
676 677 678 679 680 681 682 683 684
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

685 686 687
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
688 689
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
690 691 692 693 694
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

695
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
696 697 698 699 700
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
701 702 703
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
704

705 706
(** Functors *)
Structure cFunctor := CFunctor {
707
  cFunctor_car : ofeT  ofeT  ofeT;
708 709
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
710 711
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
712
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
713 714 715 716 717
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
718
Existing Instance cFunctor_ne.
719 720
Instance: Params (@cFunctor_map) 5.

721 722 723
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

724 725 726
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

727
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
728 729
Coercion cFunctor_diag : cFunctor >-> Funclass.

730
Program Definition constCF (B : ofeT) : cFunctor :=
731 732
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
733
Coercion constCF : ofeT >-> cFunctor.
734

735
Instance constCF_contractive B : cFunctorContractive (constCF B).
736
Proof. rewrite /cFunctorContractive; apply _. Qed.
737 738 739 740

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
741
Notation "∙" := idCF : cFunctor_scope.
742

743 744 745 746 747
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
748 749 750
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
751 752 753 754 755
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
756
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
757

758 759 760 761 762 763 764 765
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

766 767 768
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
769

770
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
771
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
772 773 774
Instance</