cmra.v 59.7 KB
Newer Older
1
From iris.algebra Require Export ofe monoid.
2
Set Default Proof Using "Type".
3

Robbert Krebbers's avatar
Robbert Krebbers committed
4
Class PCore (A : Type) := pcore : A  option A.
5
Hint Mode PCore ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
6
Instance: Params (@pcore) 2.
7
8

Class Op (A : Type) := op : A  A  A.
9
Hint Mode Op ! : typeclass_instances.
10
11
12
13
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

14
15
16
17
18
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
19
20
21
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
22
Hint Extern 0 (_  _) => reflexivity.
23
24
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
25
Class ValidN (A : Type) := validN : nat  A  Prop.
26
Hint Mode ValidN ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Instance: Params (@validN) 3.
28
Notation "✓{ n } x" := (validN n x)
29
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
30

31
Class Valid (A : Type) := valid : A  Prop.
32
Hint Mode Valid ! : typeclass_instances.
33
Instance: Params (@valid) 2.
34
Notation "✓ x" := (valid x) (at level 20) : C_scope.
35

36
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
37
Notation "x ≼{ n } y" := (includedN n x y)
38
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
39
Instance: Params (@includedN) 4.
40
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
41

42
Set Primitive Projections.
Robbert Krebbers's avatar
Robbert Krebbers committed
43
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  (* setoids *)
45
  mixin_cmra_op_ne (x : A) : NonExpansive (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
48
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
49
  (* valid *)
50
  mixin_cmra_valid_validN x :  x   n, {n} x;
51
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
52
  (* monoid *)
53
54
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
55
56
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
57
  mixin_cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
58
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
59
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
60
61
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
62
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
Robbert Krebbers's avatar
Robbert Krebbers committed
63
}.
64
Unset Primitive Projections.
Robbert Krebbers's avatar
Robbert Krebbers committed
65

Robbert Krebbers's avatar
Robbert Krebbers committed
66
(** Bundeled version *)
67
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
68
69
70
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
71
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
72
  cmra_op : Op cmra_car;
73
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
74
  cmra_validN : ValidN cmra_car;
75
  cmra_ofe_mixin : OfeMixin cmra_car;
76
  cmra_mixin : CMRAMixin cmra_car;
77
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
78
}.
79
Arguments CMRAT' _ {_ _ _ _ _ _} _ _ _.
80
81
82
83
84
(* Given [m : CMRAMixin A], the notation [CMRAT A m] provides a smart
constructor, which uses [ofe_mixin_of A] to infer the canonical OFE mixin of
the type [A], so that it does not have to be given manually. *)
Notation CMRAT A m := (CMRAT' A (ofe_mixin_of A%type) m A) (only parsing).

85
86
87
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
Arguments cmra_pcore : simpl never.
89
Arguments cmra_op : simpl never.
90
Arguments cmra_valid : simpl never.
91
Arguments cmra_validN : simpl never.
92
Arguments cmra_ofe_mixin : simpl never.
93
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
94
Add Printing Constructor cmraT.
95
96
97
98
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
99
100
Coercion cmra_ofeC (A : cmraT) : ofeT := OfeT A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeC.
Robbert Krebbers's avatar
Robbert Krebbers committed
101

102
103
104
105
Definition cmra_mixin_of' A {Ac : cmraT} (f : Ac  A) : CMRAMixin Ac := cmra_mixin Ac.
Notation cmra_mixin_of A :=
  ltac:(let H := eval hnf in (cmra_mixin_of' A id) in exact H) (only parsing).

106
107
108
109
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
110
  Global Instance cmra_op_ne (x : A) : NonExpansive (op x).
111
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
113
114
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
115
116
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
117
118
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
119
120
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
121
122
123
124
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
127
128
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
129
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
130
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
131
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
132
133
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
134
  Lemma cmra_extend n x y1 y2 :
135
    {n} x  x {n} y1  y2 
136
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
137
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
138
139
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
142
143
144
145
146
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.
147
Hint Mode Persistent + ! : typeclass_instances.
148
Instance: Params (@Persistent) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
149

150
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
151
152
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
153
Hint Mode Exclusive + ! : typeclass_instances.
154
Instance: Params (@Exclusive) 1.
155

156
157
158
159
160
(** * Cancelable elements. *)
Class Cancelable {A : cmraT} (x : A) :=
  cancelableN n y z : {n}(x  y)  x  y {n} x  z  y {n} z.
Arguments cancelableN {_} _ {_} _ _ _ _.
Hint Mode Cancelable + ! : typeclass_instances.
161
Instance: Params (@Cancelable) 1.
162
163
164
165
166
167

(** * Identity-free elements. *)
Class IdFree {A : cmraT} (x : A) :=
  id_free0_r y : {0}x  x  y {0} x  False.
Arguments id_free0_r {_} _ {_} _ _.
Hint Mode IdFree + ! : typeclass_instances.
168
Instance: Params (@IdFree) 1.
169

Robbert Krebbers's avatar
Robbert Krebbers committed
170
171
172
173
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).
174
Hint Mode CMRATotal ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176

Class Core (A : Type) := core : A  A.
177
Hint Mode Core ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
179
180
181
182
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
183
(** * CMRAs with a unit element *)
Robbert Krebbers's avatar
Robbert Krebbers committed
184
185
186
187
188
189
190
Class Unit (A : Type) := ε : A.
Arguments ε {_ _}.

Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Unit A} := {
  mixin_ucmra_unit_valid :  ε;
  mixin_ucmra_unit_left_id : LeftId () ε ();
  mixin_ucmra_pcore_unit : pcore ε  Some ε
191
}.
192

193
Structure ucmraT := UCMRAT' {
194
195
196
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  ucmra_pcore : PCore ucmra_car;
198
199
200
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
201
  ucmra_unit : Unit ucmra_car;
202
  ucmra_ofe_mixin : OfeMixin ucmra_car;
203
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
204
  ucmra_mixin : UCMRAMixin ucmra_car;
205
  _ : Type;
206
}.
207
Arguments UCMRAT' _ {_ _ _ _ _ _ _} _ _ _ _.
208
209
Notation UCMRAT A m :=
  (UCMRAT' A (ofe_mixin_of A%type) (cmra_mixin_of A%type) m A) (only parsing).
210
211
212
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
Arguments ucmra_pcore : simpl never.
214
215
216
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
217
Arguments ucmra_ofe_mixin : simpl never.
218
219
220
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
Hint Extern 0 (Unit _) => eapply (@ucmra_unit _) : typeclass_instances.
222
223
Coercion ucmra_ofeC (A : ucmraT) : ofeT := OfeT A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeC.
224
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
225
  CMRAT' A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A) A.
226
227
228
229
230
231
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
  Lemma ucmra_unit_valid :  (ε : A).
233
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  Global Instance ucmra_unit_left_id : LeftId () ε (@op A _).
235
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
236
  Lemma ucmra_pcore_unit : pcore (ε:A)  Some ε.
Robbert Krebbers's avatar
Robbert Krebbers committed
237
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
238
End ucmra_mixin.
239

240
(** * Discrete CMRAs *)
241
Class CMRADiscrete (A : cmraT) := {
242
243
244
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.
245
Hint Mode CMRADiscrete ! : typeclass_instances.
246

Robbert Krebbers's avatar
Robbert Krebbers committed
247
(** * Morphisms *)
248
249
250
251
252
Class CMRAMorphism {A B : cmraT} (f : A  B) := {
  cmra_morphism_ne :> NonExpansive f;
  cmra_morphism_validN n x : {n} x  {n} f x;
  cmra_morphism_pcore x : pcore (f x)  f <$> pcore x;
  cmra_morphism_op x y : f x  f y  f (x  y)
253
}.
254
255
256
Arguments cmra_morphism_validN {_ _} _ {_} _ _ _.
Arguments cmra_morphism_pcore {_ _} _ {_} _.
Arguments cmra_morphism_op {_ _} _ {_} _ _.
257

Robbert Krebbers's avatar
Robbert Krebbers committed
258
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
259
Section cmra.
260
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
261
Implicit Types x y z : A.
262
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
263

264
(** ** Setoids *)
265
Global Instance cmra_pcore_ne' : NonExpansive (@pcore A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
266
Proof.
267
  intros n x y Hxy. destruct (pcore x) as [cx|] eqn:?.
Robbert Krebbers's avatar
Robbert Krebbers committed
268
269
270
271
272
273
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
274
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
276
277
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
278
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
279
280
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
281
282
Global Instance cmra_op_ne' : NonExpansive2 (@op A _).
Proof. intros n x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
283
Global Instance cmra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
284
285
286
287
288
289
290
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
291
292
293
294
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
313
Global Instance cmra_opM_ne : NonExpansive2 (@opM A).
314
Proof. destruct 2; by ofe_subst. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
316
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
317

318
319
320
321
322
323
324
325
326
Global Instance Persistent_proper : Proper (() ==> iff) (@Persistent A).
Proof. solve_proper. Qed.
Global Instance Exclusive_proper : Proper (() ==> iff) (@Exclusive A).
Proof. intros x y Hxy. rewrite /Exclusive. by setoid_rewrite Hxy. Qed.
Global Instance Cancelable_proper : Proper (() ==> iff) (@Cancelable A).
Proof. intros x y Hxy. rewrite /Cancelable. by setoid_rewrite Hxy. Qed.
Global Instance IdFree_proper : Proper (() ==> iff) (@IdFree A).
Proof. intros x y Hxy. rewrite /IdFree. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
327
328
329
330
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

331
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
332
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
333
334
335
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
337
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
338
339
340
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
341
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
342
343
344
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
345
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
346
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
347
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
349
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed.
350
351
352
353
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
355
356
357
358
359
360
361
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
362

363
364
365
366
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

367
(** ** Exclusive elements *)
368
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
369
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
370
371
372
373
374
375
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
376
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
377
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
378
379
380
381
Lemma exclusive_includedN n x `{!Exclusive x} y : x {n} y  {n} y  False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x  y   y  False.
Proof. intros [? ->]. by apply exclusive_l. Qed.
382

383
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
384
385
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
387
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
389
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
Global Instance cmra_included_trans: Transitive (@included A _ _).
391
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
393
Qed.
394
395
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
396
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
397
Proof. intros Hyv [z ?]; ofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
400

Robbert Krebbers's avatar
Robbert Krebbers committed
401
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
402
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
403
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
404
405
406
407
408
409
410
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
411
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
412
Lemma cmra_included_r x y : y  x  y.
413
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
414

415
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
416
417
418
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
419
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
420
421
  exists cy; by rewrite Hcx.
Qed.
422
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
423
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
426
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
427
428
429
430
431
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
432
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
433
434
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
435

436
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
437
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
438
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
439
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
440
441
442
443
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
444
445
446
447
Lemma cmra_monoN n x1 x2 y1 y2 : x1 {n} y1  x2 {n} y2  x1  x2 {n} y1  y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1  y1  x2  y2  x1  x2  y1  y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.
448

449
450
451
452
453
454
455
Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
456
Lemma cmra_included_dist_l n x1 x2 x1' :
457
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
458
Proof.
459
460
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Qed.
462

Robbert Krebbers's avatar
Robbert Krebbers committed
463
464
(** ** Total core *)
Section total_core.
465
  Local Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
466
467
468
469
470
471
472
473
474
475
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
476
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
477
478
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
479
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
480
481
482
    by rewrite /core /= Hcx Hcy.
  Qed.

483
  Global Instance cmra_core_ne : NonExpansive (@core A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
484
  Proof.
485
    intros n x y Hxy. destruct (cmra_total x) as [cx Hcx].
Robbert Krebbers's avatar
Robbert Krebbers committed
486
487
488
489
490
491
492
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
493
494
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
525
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
527
  Proof.
    intros [z ->].
528
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
529
530
531
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
532
(** ** Timeless *)
533
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
534
535
Proof.
  intros ?? [x' ?].
536
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
537
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
538
Qed.
539
540
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
541
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
542
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
543
544
Proof.
  intros ??? z Hz.
545
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
546
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
547
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
548
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549

550
551
552
553
554
555
556
557
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
558
  split; first by apply cmra_included_includedN.
559
560
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
561
562
563

(** Cancelable elements  *)
Global Instance cancelable_proper : Proper (equiv ==> iff) (@Cancelable A).
564
565
Proof. unfold Cancelable. intros x x' EQ. by setoid_rewrite EQ. Qed.
Lemma cancelable x `{!Cancelable x} y z : (x  y)  x  y  x  z  y  z.
566
567
568
569
570
571
572
Proof. rewrite !equiv_dist cmra_valid_validN. intros. by apply (cancelableN x). Qed.
Lemma discrete_cancelable x `{CMRADiscrete A}:
  ( y z, (x  y)  x  y  x  z  y  z)  Cancelable x.
Proof. intros ????. rewrite -!timeless_iff -cmra_discrete_valid_iff. auto. Qed.
Global Instance cancelable_op x y :
  Cancelable x  Cancelable y  Cancelable (x  y).
Proof.
573
  intros ?? n z z' ??. apply (cancelableN y), (cancelableN x).
574
575
576
577
578
  - eapply cmra_validN_op_r. by rewrite assoc.
  - by rewrite assoc.
  - by rewrite !assoc.
Qed.
Global Instance exclusive_cancelable (x : A) : Exclusive x  Cancelable x.
579
Proof. intros ? n z z' []%(exclusiveN_l _ x). Qed.
580
581

(** Id-free elements  *)
582
Global Instance id_free_ne n : Proper (dist n ==> iff) (@IdFree A).
583
Proof.
584
585
  intros x x' EQ%(dist_le _ 0); last lia. rewrite /IdFree.
  split=> y ?; (rewrite -EQ || rewrite EQ); eauto.
586
587
Qed.
Global Instance id_free_proper : Proper (equiv ==> iff) (@IdFree A).
588
Proof. by move=> P Q /equiv_dist /(_ 0)=> ->. Qed.
589
590
591
592
593
594
595
596
597
Lemma id_freeN_r n n' x `{!IdFree x} y : {n}x  x  y {n'} x  False.
Proof. eauto using cmra_validN_le, dist_le with lia. Qed.
Lemma id_freeN_l n n' x `{!IdFree x} y : {n}x  y  x {n'} x  False.
Proof. rewrite comm. eauto using id_freeN_r. Qed.
Lemma id_free_r x `{!IdFree x} y : x  x  y  x  False.
Proof. move=> /cmra_valid_validN ? /equiv_dist. eauto. Qed.
Lemma id_free_l x `{!IdFree x} y : x  y  x  x  False.
Proof. rewrite comm. eauto using id_free_r. Qed.
Lemma discrete_id_free x `{CMRADiscrete A}:
598
  ( y,  x  x  y  x  False)  IdFree x.
599
Proof. repeat intro. eauto using cmra_discrete_valid, cmra_discrete, timeless. Qed.
600
Global Instance id_free_op_r x y : IdFree y  Cancelable x  IdFree (x  y).
601
Proof.
602
  intros ?? z ? Hid%symmetry. revert Hid. rewrite -assoc=>/(cancelableN x) ?.
603
604
  eapply (id_free0_r _); [by eapply cmra_validN_op_r |symmetry; eauto].
Qed.
605
Global Instance id_free_op_l x y : IdFree x  Cancelable y  IdFree (x  y).
606
607
608
Proof. intros. rewrite comm. apply _. Qed.
Global Instance exclusive_id_free x : Exclusive x  IdFree x.
Proof. intros ? z ? Hid. apply (exclusiveN_l 0 x z). by rewrite Hid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
609
610
End cmra.

611
612
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
613
614
615
  Context {A : ucmraT}.
  Implicit Types x y z : A.

Robbert Krebbers's avatar
Robbert Krebbers committed
616
  Lemma ucmra_unit_validN n : {n} (ε:A).
Robbert Krebbers's avatar
Robbert Krebbers committed
617
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
618
  Lemma ucmra_unit_leastN n x : ε {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
  Proof. by exists x; rewrite left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
  Lemma ucmra_unit_least x : ε  x.
Robbert Krebbers's avatar
Robbert Krebbers committed
621
  Proof. by exists x; rewrite left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
622
  Global Instance ucmra_unit_right_id : RightId () ε (@op A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
623
  Proof. by intros x; rewrite (comm op) left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
  Global Instance ucmra_unit_persistent : Persistent (ε:A).
Robbert Krebbers's avatar
Robbert Krebbers committed
625
626
627
628
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
629
630
    intros x. destruct (cmra_pcore_mono' ε x ε) as (cx&->&?);
      eauto using ucmra_unit_least, (persistent (ε:A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
631
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
632
  Global Instance empty_cancelable : Cancelable (ε:A).
633
  Proof. intros ???. by rewrite !left_id. Qed.
634
635

  (* For big ops *)
Robbert Krebbers's avatar
Robbert Krebbers committed
636
  Global Instance cmra_monoid : Monoid (@op A _) := {| monoid_unit := ε |}.
637
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
638

639
Hint Immediate cmra_unit_total.
640
641
642

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
643
  Local Set Default Proof Using "Type*".
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
Robbert Krebbers's avatar
Robbert Krebbers committed
667
  Lemma persistent_dup_L x `{!Persistent x} : x = x  x.
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
690
  Local Set Default Proof Using "Type*".
691
692
693
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

Robbert Krebbers's avatar
Robbert Krebbers committed
694
  Global Instance ucmra_unit_left_id_L : LeftId (=) ε (@op A _).
695
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
696
  Global Instance ucmra_unit_right_id_L : RightId (=) ε (@op A _).
697
698
699
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
700
701
702
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
703
704
  Context (total :  x : A, is_Some (pcore x)).
  Context (op_ne :  x : A, NonExpansive (op x)).
705
  Context (core_ne : NonExpansive (@core A _)).
Robbert Krebbers's avatar
Robbert Krebbers committed
706
707
708
709
710
711
712
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
713
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
714
715
716
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
717
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
718
  Lemma cmra_total_mixin : CMRAMixin A.
719
  Proof using Type*.
Robbert Krebbers's avatar
Robbert Krebbers committed
720
721
722
723
724
725
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
726
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
727
728
729
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
730

731
732
733
734
735
736
737
(** * Properties about morphisms *)
Instance cmra_morphism_id {A : cmraT} : CMRAMorphism (@id A).
Proof. split=>//=. apply _. intros. by rewrite option_fmap_id. Qed.
Instance cmra_morphism_proper {A B : cmraT} (f : A  B) `{!CMRAMorphism f} :
  Proper (() ==> ()) f := ne_proper _.
Instance cmra_morphism_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMorphism f  CMRAMorphism g  CMRAMorphism (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
738
739
Proof.
  split.
740
  - apply _.
741
742
743
  - move=> n x Hx