cmra.v 58.3 KB
Newer Older
1
From iris.algebra Require Export ofe.
2
Set Default Proof Using "Type".
3

Robbert Krebbers's avatar
Robbert Krebbers committed
4 5
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
6 7 8 9 10 11

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

12 13 14 15 16
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
17 18 19
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
20
Hint Extern 0 (_  _) => reflexivity.
21 22
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
23 24
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
25
Notation "✓{ n } x" := (validN n x)
26
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
30
Notation "✓ x" := (valid x) (at level 20) : C_scope.
31

32
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Notation "x ≼{ n } y" := (includedN n x y)
34
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Instance: Params (@includedN) 4.
36
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  (* setoids *)
40
  mixin_cmra_op_ne (x : A) : NonExpansive (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
43
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  (* valid *)
45
  mixin_cmra_valid_validN x :  x   n, {n} x;
46
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  (* monoid *)
48 49
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
50 51
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
52
  mixin_cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
53
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
54
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
55 56
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
57
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
Robbert Krebbers's avatar
Robbert Krebbers committed
58
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
59

Robbert Krebbers's avatar
Robbert Krebbers committed
60
(** Bundeled version *)
61
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
62 63 64
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
66
  cmra_op : Op cmra_car;
67
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  cmra_validN : ValidN cmra_car;
69
  cmra_ofe_mixin : OfeMixin cmra_car;
70
  cmra_mixin : CMRAMixin cmra_car;
71
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
72
}.
73
Arguments CMRAT' _ {_ _ _ _ _ _} _ _ _.
74 75 76 77 78
(* Given [m : CMRAMixin A], the notation [CMRAT A m] provides a smart
constructor, which uses [ofe_mixin_of A] to infer the canonical OFE mixin of
the type [A], so that it does not have to be given manually. *)
Notation CMRAT A m := (CMRAT' A (ofe_mixin_of A%type) m A) (only parsing).

79 80 81
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Arguments cmra_pcore : simpl never.
83
Arguments cmra_op : simpl never.
84
Arguments cmra_valid : simpl never.
85
Arguments cmra_validN : simpl never.
86
Arguments cmra_ofe_mixin : simpl never.
87
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
Add Printing Constructor cmraT.
89 90 91 92
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
93 94
Coercion cmra_ofeC (A : cmraT) : ofeT := OfeT A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeC.
Robbert Krebbers's avatar
Robbert Krebbers committed
95

96 97 98 99
Definition cmra_mixin_of' A {Ac : cmraT} (f : Ac  A) : CMRAMixin Ac := cmra_mixin Ac.
Notation cmra_mixin_of A :=
  ltac:(let H := eval hnf in (cmra_mixin_of' A id) in exact H) (only parsing).

100 101 102 103
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
104
  Global Instance cmra_op_ne (x : A) : NonExpansive (op x).
105
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
109 110
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
111 112
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
113 114
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
115 116 117 118
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119 120 121 122
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
123
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
124
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
125
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
126 127
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
128
  Lemma cmra_extend n x y1 y2 :
129
    {n} x  x {n} y1  y2 
130
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
131
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
132 133
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
134 135 136 137 138 139 140
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.
141
Hint Mode Persistent + ! : typeclass_instances.
142
Instance: Params (@Persistent) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
143

144
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
145 146
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
147
Hint Mode Exclusive + ! : typeclass_instances.
148
Instance: Params (@Exclusive) 1.
149

150 151 152 153 154
(** * Cancelable elements. *)
Class Cancelable {A : cmraT} (x : A) :=
  cancelableN n y z : {n}(x  y)  x  y {n} x  z  y {n} z.
Arguments cancelableN {_} _ {_} _ _ _ _.
Hint Mode Cancelable + ! : typeclass_instances.
155
Instance: Params (@Cancelable) 1.
156 157 158 159 160 161

(** * Identity-free elements. *)
Class IdFree {A : cmraT} (x : A) :=
  id_free0_r y : {0}x  x  y {0} x  False.
Arguments id_free0_r {_} _ {_} _ _.
Hint Mode IdFree + ! : typeclass_instances.
162
Instance: Params (@IdFree) 1.
163

Robbert Krebbers's avatar
Robbert Krebbers committed
164 165 166 167 168 169 170 171 172 173 174
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
175
(** * CMRAs with a unit element *)
176
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
177
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
178
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
179 180
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  mixin_ucmra_pcore_unit : pcore   Some 
182
}.
183

184
Structure ucmraT := UCMRAT' {
185 186 187
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  ucmra_pcore : PCore ucmra_car;
189 190 191 192
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
193
  ucmra_ofe_mixin : OfeMixin ucmra_car;
194
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
195
  ucmra_mixin : UCMRAMixin ucmra_car;
196
  _ : Type;
197
}.
198
Arguments UCMRAT' _ {_ _ _ _ _ _ _} _ _ _ _.
199 200
Notation UCMRAT A m :=
  (UCMRAT' A (ofe_mixin_of A%type) (cmra_mixin_of A%type) m A) (only parsing).
201 202 203
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
204
Arguments ucmra_pcore : simpl never.
205 206 207
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
208
Arguments ucmra_ofe_mixin : simpl never.
209 210 211
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
212
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
213 214
Coercion ucmra_ofeC (A : ucmraT) : ofeT := OfeT A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeC.
215
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
216
  CMRAT' A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A) A.
217 218 219 220 221 222 223 224 225 226
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
227 228
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
229
End ucmra_mixin.
230

231
(** * Discrete CMRAs *)
232
Class CMRADiscrete (A : cmraT) := {
233 234 235 236
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
237
(** * Morphisms *)
238
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
239
  cmra_monotone_ne :> NonExpansive f;
240
  cmra_monotone_validN n x : {n} x  {n} f x;
241
  cmra_monotone x y : x  y  f x  f y
242
}.
243
Arguments cmra_monotone_validN {_ _} _ {_} _ _ _.
244
Arguments cmra_monotone {_ _} _ {_} _ _ _.
245

246 247 248
(* Not all intended homomorphisms preserve validity, in particular it does not
hold for the [ownM] and [own] connectives. *)
Class CMRAHomomorphism {A B : cmraT} (f : A  B) := {
249
  cmra_homomorphism_ne :> NonExpansive f;
250 251 252 253 254 255 256 257 258 259
  cmra_homomorphism x y : f (x  y)  f x  f y
}.
Arguments cmra_homomorphism {_ _} _ _ _ _.

Class UCMRAHomomorphism {A B : ucmraT} (f : A  B) := {
  ucmra_homomorphism :> CMRAHomomorphism f;
  ucmra_homomorphism_unit : f   
}.
Arguments ucmra_homomorphism_unit {_ _} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
260
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
261
Section cmra.
262
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
263
Implicit Types x y z : A.
264
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
265

266
(** ** Setoids *)
267
Global Instance cmra_pcore_ne' : NonExpansive (@pcore A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
268
Proof.
269
  intros n x y Hxy. destruct (pcore x) as [cx|] eqn:?.
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271 272 273 274 275
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
276
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
277 278 279
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
280
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
281 282
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
283 284
Global Instance cmra_op_ne' : NonExpansive2 (@op A _).
Proof. intros n x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
285
Global Instance cmra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
286 287 288 289 290 291 292
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
293 294 295 296
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
315
Global Instance cmra_opM_ne : NonExpansive2 (@opM A).
316
Proof. destruct 2; by ofe_subst. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317 318
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
319

320 321 322 323 324 325 326 327 328
Global Instance Persistent_proper : Proper (() ==> iff) (@Persistent A).
Proof. solve_proper. Qed.
Global Instance Exclusive_proper : Proper (() ==> iff) (@Exclusive A).
Proof. intros x y Hxy. rewrite /Exclusive. by setoid_rewrite Hxy. Qed.
Global Instance Cancelable_proper : Proper (() ==> iff) (@Cancelable A).
Proof. intros x y Hxy. rewrite /Cancelable. by setoid_rewrite Hxy. Qed.
Global Instance IdFree_proper : Proper (() ==> iff) (@IdFree A).
Proof. intros x y Hxy. rewrite /IdFree. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
329 330 331 332
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

333
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
334
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
335 336 337
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
338
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
339
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
340 341 342
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
343
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
344 345 346
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
347
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
349
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
350
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
351
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed.
352 353 354 355
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356 357 358 359 360 361 362 363
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
364

365 366 367 368
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

369
(** ** Exclusive elements *)
370
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
371
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
372 373 374 375 376 377
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
378
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
379
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
380 381 382 383
Lemma exclusive_includedN n x `{!Exclusive x} y : x {n} y  {n} y  False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x  y   y  False.
Proof. intros [? ->]. by apply exclusive_l. Qed.
384

385
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
386 387
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
389
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
391
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Global Instance cmra_included_trans: Transitive (@included A _ _).
393
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
395
Qed.
396 397
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
399
Proof. intros Hyv [z ?]; ofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
401
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
402

Robbert Krebbers's avatar
Robbert Krebbers committed
403
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
404
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
405
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
406 407 408 409 410 411 412
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
413
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
414
Lemma cmra_included_r x y : y  x  y.
415
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
416

417
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
418 419 420
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
421
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
422 423
  exists cy; by rewrite Hcx.
Qed.
424
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
425
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
428
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430 431 432 433
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
434
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
435 436
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
437

438
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
439
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
440
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
441
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
442 443 444 445
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
446 447 448 449
Lemma cmra_monoN n x1 x2 y1 y2 : x1 {n} y1  x2 {n} y2  x1  x2 {n} y1  y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1  y1  x2  y2  x1  x2  y1  y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.
450

451 452 453 454 455 456 457
Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
458
Lemma cmra_included_dist_l n x1 x2 x1' :
459
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
Proof.
461 462
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
463
Qed.
464

Robbert Krebbers's avatar
Robbert Krebbers committed
465 466
(** ** Total core *)
Section total_core.
467
  Local Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
468 469 470 471 472 473 474 475 476 477
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
478
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
479 480
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
481
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
482 483 484
    by rewrite /core /= Hcx Hcy.
  Qed.

485
  Global Instance cmra_core_ne : NonExpansive (@core A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
486
  Proof.
487
    intros n x y Hxy. destruct (cmra_total x) as [cx Hcx].
Robbert Krebbers's avatar
Robbert Krebbers committed
488 489 490 491 492 493 494
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
495 496
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
527
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
528 529
  Proof.
    intros [z ->].
530
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
531 532 533
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
534
(** ** Timeless *)
535
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
536 537
Proof.
  intros ?? [x' ?].
538
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
539
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
540
Qed.
541 542
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
543
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
544
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546
Proof.
  intros ??? z Hz.
547
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
548
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
549
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
550
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
551

552 553 554 555 556 557 558 559
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
  split; first by apply cmra_included_includedN.
561 562
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
563 564 565

(** Cancelable elements  *)
Global Instance cancelable_proper : Proper (equiv ==> iff) (@Cancelable A).
566 567
Proof. unfold Cancelable. intros x x' EQ. by setoid_rewrite EQ. Qed.
Lemma cancelable x `{!Cancelable x} y z : (x  y)  x  y  x  z  y  z.
568 569 570 571 572 573 574
Proof. rewrite !equiv_dist cmra_valid_validN. intros. by apply (cancelableN x). Qed.
Lemma discrete_cancelable x `{CMRADiscrete A}:
  ( y z, (x  y)  x  y  x  z  y  z)  Cancelable x.
Proof. intros ????. rewrite -!timeless_iff -cmra_discrete_valid_iff. auto. Qed.
Global Instance cancelable_op x y :
  Cancelable x  Cancelable y  Cancelable (x  y).
Proof.
575
  intros ?? n z z' ??. apply (cancelableN y), (cancelableN x).
576 577 578 579 580
  - eapply cmra_validN_op_r. by rewrite assoc.
  - by rewrite assoc.
  - by rewrite !assoc.
Qed.
Global Instance exclusive_cancelable (x : A) : Exclusive x  Cancelable x.
581
Proof. intros ? n z z' []%(exclusiveN_l _ x). Qed.
582 583

(** Id-free elements  *)
584
Global Instance id_free_ne n : Proper (dist n ==> iff) (@IdFree A).
585
Proof.
586 587
  intros x x' EQ%(dist_le _ 0); last lia. rewrite /IdFree.
  split=> y ?; (rewrite -EQ || rewrite EQ); eauto.
588 589
Qed.
Global Instance id_free_proper : Proper (equiv ==> iff) (@IdFree A).
590
Proof. by move=> P Q /equiv_dist /(_ 0)=> ->. Qed.
591 592 593 594 595 596 597 598 599
Lemma id_freeN_r n n' x `{!IdFree x} y : {n}x  x  y {n'} x  False.
Proof. eauto using cmra_validN_le, dist_le with lia. Qed.
Lemma id_freeN_l n n' x `{!IdFree x} y : {n}x  y  x {n'} x  False.
Proof. rewrite comm. eauto using id_freeN_r. Qed.
Lemma id_free_r x `{!IdFree x} y : x  x  y  x  False.
Proof. move=> /cmra_valid_validN ? /equiv_dist. eauto. Qed.
Lemma id_free_l x `{!IdFree x} y : x  y  x  x  False.
Proof. rewrite comm. eauto using id_free_r. Qed.
Lemma discrete_id_free x `{CMRADiscrete A}:
600
  ( y,  x  x  y  x  False)  IdFree x.
601
Proof. repeat intro. eauto using cmra_discrete_valid, cmra_discrete, timeless. Qed.
602
Global Instance id_free_op_r x y : IdFree y  Cancelable x  IdFree (x  y).
603
Proof.
604
  intros ?? z ? Hid%symmetry. revert Hid. rewrite -assoc=>/(cancelableN x) ?.
605 606
  eapply (id_free0_r _); [by eapply cmra_validN_op_r |symmetry; eauto].
Qed.
607
Global Instance id_free_op_l x y : IdFree x  Cancelable y  IdFree (x  y).
608 609 610
Proof. intros. rewrite comm. apply _. Qed.
Global Instance exclusive_id_free x : Exclusive x  IdFree x.
Proof. intros ? z ? Hid. apply (exclusiveN_l 0 x z). by rewrite Hid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
611 612
End cmra.

613 614
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
631
    intros x. destruct (cmra_pcore_mono'  x ) as (cx&->&?);
632
      eauto using ucmra_unit_least, (persistent (:A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
633
  Qed.
634 635
  Global Instance empty_cancelable : Cancelable (:A).
  Proof. intros ???. by rewrite !left_id. Qed.
636
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
637 638
Hint Immediate cmra_unit_total.

639 640 641

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
642
  Local Set Default Proof Using "Type*".
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
Robbert Krebbers's avatar
Robbert Krebbers committed
666
  Lemma persistent_dup_L x `{!Persistent x} : x = x  x.
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
689
  Local Set Default Proof Using "Type*".
690 691 692 693 694 695 696 697 698
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_left_id_L : LeftId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id_L : RightId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
699 700 701 702
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
703 704
  Context (op_ne :  (x : A), NonExpansive (op x)).
  Context (core_ne : NonExpansive (@core A _)).
Robbert Krebbers's avatar
Robbert Krebbers committed
705 706 707 708 709 710 711
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
712
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
713 714 715
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
716
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
717
  Lemma cmra_total_mixin : CMRAMixin A.
718
  Proof using Type*.
Robbert Krebbers's avatar
Robbert Krebbers committed
719 720 721 722 723 724
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
725
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
726 727 728
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
729

730
(** * Properties about monotone functions *)
731
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
732
Proof. repeat split; by try apply _. Qed.
733 734
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed