base_logic.v 2.13 KB
Newer Older
1
From iris.base_logic Require Export derived.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.bi Require Export bi.
3
From iris.algebra Require Import proofmode_classes.
4
Set Default Proof Using "Type".
5

6 7 8
(* The trick of having multiple [uPred] modules, which are all exported in
another [uPred] module is by Jason Gross and described in:
https://sympa.inria.fr/sympa/arc/coq-club/2016-12/msg00069.html *)
9 10 11
Module Import uPred.
  Export upred.uPred.
  Export derived.uPred.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
  Export bi.
13 14 15
End uPred.

(* Hint DB for the logic *)
16
Hint Resolve pure_intro : I.
17 18
Hint Resolve or_elim or_intro_l' or_intro_r' : I.
Hint Resolve and_intro and_elim_l' and_elim_r' : I.
19
Hint Resolve persistently_mono : I.
Robbert Krebbers's avatar
Robbert Krebbers committed
20
Hint Resolve sep_mono : I. (* sep_elim_l' sep_elim_r'  *)
21
Hint Immediate True_intro False_elim : I.
Robbert Krebbers's avatar
Robbert Krebbers committed
22
Hint Immediate iff_refl internal_eq_refl : I.
23 24 25 26 27 28 29 30 31 32

(* Setup of the proof mode *)
Section class_instances.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.

Global Instance into_pure_cmra_valid `{CmraDiscrete A} (a : A) :
  @IntoPure (uPredI M) ( a) ( a).
Proof. by rewrite /IntoPure discrete_valid. Qed.

33 34
Global Instance from_pure_cmra_valid {A : cmraT} af (a : A) :
  @FromPure (uPredI M) af ( a) ( a).
35
Proof.
36
  rewrite /FromPure. eapply bi.pure_elim; [by apply affinely_if_elim|]=> ?.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  rewrite -cmra_valid_intro //. by apply pure_intro.
Qed.

Global Instance from_sep_ownM (a b1 b2 : M) :
  IsOp a b1 b2 
  FromSep (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /FromSep -ownM_op -is_op. Qed.
Global Instance from_sep_ownM_core_id (a b1 b2 : M) :
  IsOp a b1 b2  TCOr (CoreId b1) (CoreId b2) 
  FromAnd (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
  intros ? H. rewrite /FromAnd (is_op a) ownM_op.
  destruct H; by rewrite persistent_and_sep.
Qed.

Global Instance into_and_ownM p (a b1 b2 : M) :
  IsOp a b1 b2  IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
55
  intros. apply intuitionistically_if_mono. by rewrite (is_op a) ownM_op sep_and.
56 57 58 59 60 61
Qed.

Global Instance into_sep_ownM (a b1 b2 : M) :
  IsOp a b1 b2  IntoSep (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /IntoSep (is_op a) ownM_op. Qed.
End class_instances.