updates.v 8.47 KB
Newer Older
1 2 3
From iris.algebra Require Export cmra.

(** * Local updates *)
4 5 6 7
Record local_update {A : cmraT} (mz : option A) (x y : A) := {
  local_update_valid n : {n} (x ? mz)  {n} (y ? mz);
  local_update_go n mz' :
    {n} (x ? mz)  x ? mz {n} x ? mz'  y ? mz {n} y ? mz'
8
}.
9 10
Notation "x ~l~> y @ mz" := (local_update mz x y) (at level 70).
Instance: Params (@local_update) 1.
11 12

(** * Frame preserving updates *)
13 14 15 16
(* This quantifies over [option A] for the frame.  That is necessary to
   make the following hold:
     x ~~> P → Some c ~~> Some P
*)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Definition cmra_updateP {A : cmraT} (x : A) (P : A  Prop) :=  n mz,
  {n} (x ? mz)   y, P y  {n} (y ? mz).
Instance: Params (@cmra_updateP) 1.
Infix "~~>:" := cmra_updateP (at level 70).

Definition cmra_update {A : cmraT} (x y : A) :=  n mz,
  {n} (x ? mz)  {n} (y ? mz).
Infix "~~>" := cmra_update (at level 70).
Instance: Params (@cmra_update) 1.

(** ** CMRAs *)
Section cmra.
Context {A : cmraT}.
Implicit Types x y : A.

32 33 34 35 36 37 38
Global Instance local_update_proper :
  Proper (() ==> () ==> () ==> iff) (@local_update A).
Proof.
  cut (Proper (() ==> () ==> () ==> impl) (@local_update A)).
  { intros Hproper; split; by apply Hproper. }
  intros mz mz' Hmz x x' Hx y y' Hy [Hv Hup]; constructor; setoid_subst; auto.
Qed.
39 40 41 42 43 44 45 46 47 48 49 50 51
Global Instance cmra_updateP_proper :
  Proper (() ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
  rewrite /pointwise_relation /cmra_updateP=> x x' Hx P P' HP;
    split=> ? n mz; setoid_subst; naive_solver.
Qed.
Global Instance cmra_update_proper :
  Proper (() ==> () ==> iff) (@cmra_update A).
Proof.
  rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto.
Qed.

(** ** Local updates *)
52
Global Instance local_update_preorder mz : PreOrder (@local_update A mz).
53
Proof.
54 55 56
  split.
  - intros x; by split.
  - intros x1 x2 x3 [??] [??]; split; eauto.
57 58
Qed.

59 60 61 62 63 64 65
Lemma exclusive_local_update `{!Exclusive x} y mz :  y  x ~l~> y @ mz.
Proof.
  split; intros n.
  - move=> /exclusiveN_opM ->. by apply cmra_valid_validN.
  - intros mz' ? Hmz.
    by rewrite (exclusiveN_opM n x mz) // (exclusiveN_opM n x mz') -?Hmz.
Qed.
66

67 68 69 70 71 72 73
Lemma op_local_update x1 x2 y mz :
  x1 ~l~> x2 @ Some (y ? mz)  x1  y ~l~> x2  y @ mz.
Proof.
  intros [Hv1 H1]; split.
  - intros n. rewrite !cmra_opM_assoc. move=> /Hv1 /=; auto.
  - intros n mz'. rewrite !cmra_opM_assoc. move=> Hv /(H1 _ (Some _) Hv) /=; auto.
Qed.
74

75 76
Lemma alloc_local_update x y mz :
  ( n, {n} (x ? mz)  {n} (x  y ? mz))  x ~l~> x  y @ mz.
77
Proof.
78 79
  split; first done.
  intros n mz' _. by rewrite !(comm _ x) !cmra_opM_assoc=> ->.
80
Qed.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

(** ** Frame preserving updates *)
Lemma cmra_update_updateP x y : x ~~> y  x ~~>: (y =).
Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed.
Lemma cmra_updateP_id (P : A  Prop) x : P x  x ~~>: P.
Proof. intros ? n mz ?; eauto. Qed.
Lemma cmra_updateP_compose (P Q : A  Prop) x :
  x ~~>: P  ( y, P y  y ~~>: Q)  x ~~>: Q.
Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed.
Lemma cmra_updateP_compose_l (Q : A  Prop) x y : x ~~> y  y ~~>: Q  x ~~>: Q.
Proof.
  rewrite cmra_update_updateP.
  intros; apply cmra_updateP_compose with (y =); naive_solver.
Qed.
Lemma cmra_updateP_weaken (P Q : A  Prop) x :
  x ~~>: P  ( y, P y  Q y)  x ~~>: Q.
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Proof.
  split.
  - intros x. by apply cmra_update_updateP, cmra_updateP_id.
  - intros x y z. rewrite !cmra_update_updateP.
    eauto using cmra_updateP_compose with subst.
Qed.
Lemma cmra_update_exclusive `{!Exclusive x} y:
   y  x ~~> y.
107
Proof. move=>??[z|]=>[/exclusiveN_l[]|_]. by apply cmra_valid_validN. Qed.
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

Lemma cmra_updateP_op (P1 P2 Q : A  Prop) x1 x2 :
  x1 ~~>: P1  x2 ~~>: P2  ( y1 y2, P1 y1  P2 y2  Q (y1  y2)) 
  x1  x2 ~~>: Q.
Proof.
  intros Hx1 Hx2 Hy n mz ?.
  destruct (Hx1 n (Some (x2 ? mz))) as (y1&?&?).
  { by rewrite /= -cmra_opM_assoc. }
  destruct (Hx2 n (Some (y1 ? mz))) as (y2&?&?).
  { by rewrite /= -cmra_opM_assoc (comm _ x2) cmra_opM_assoc. }
  exists (y1  y2); split; last rewrite (comm _ y1) cmra_opM_assoc; auto.
Qed.
Lemma cmra_updateP_op' (P1 P2 : A  Prop) x1 x2 :
  x1 ~~>: P1  x2 ~~>: P2 
  x1  x2 ~~>: λ y,  y1 y2, y = y1  y2  P1 y1  P2 y2.
Proof. eauto 10 using cmra_updateP_op. Qed.
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1  x2 ~~> y2  x1  x2 ~~> y1  y2.
Proof.
  rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
Qed.

(** ** Frame preserving updates for total CMRAs *)
Section total_updates.
  Context `{CMRATotal A}.

  Lemma cmra_total_updateP x (P : A  Prop) :
    x ~~>: P   n z, {n} (x  z)   y, P y  {n} (y  z).
  Proof.
    split=> Hup; [intros n z; apply (Hup n (Some z))|].
    intros n [z|] ?; simpl; [by apply Hup|].
    destruct (Hup n (core x)) as (y&?&?); first by rewrite cmra_core_r.
    eauto using cmra_validN_op_l.
  Qed.
  Lemma cmra_total_update x y : x ~~> y   n z, {n} (x  z)  {n} (y  z).
  Proof. rewrite cmra_update_updateP cmra_total_updateP. naive_solver. Qed.

  Context `{CMRADiscrete A}.

  Lemma cmra_discrete_updateP (x : A) (P : A  Prop) :
    x ~~>: P   z,  (x  z)   y, P y   (y  z).
  Proof.
    rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
  Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
    x ~~> y   z,  (x  z)   (y  z).
  Proof.
    rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
End total_updates.
End cmra.

161
(** * Transport *)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Lemma cmra_transport_updateP (P : A  Prop) (Q : B  Prop) x :
    x ~~>: P  ( y, P y  Q (T y))  T x ~~>: Q.
  Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
  Lemma cmra_transport_updateP' (P : A  Prop) x :
    x ~~>: P  T x ~~>: λ y,  y', y = cmra_transport H y'  P y'.
  Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.

(** * Product *)
Section prod.
  Context {A B : cmraT}.
  Implicit Types x : A * B.

178 179 180 181 182 183 184 185 186 187 188
  Lemma prod_local_update x y mz :
    x.1 ~l~> y.1 @ fst <$> mz  x.2 ~l~> y.2 @ snd <$> mz 
    x ~l~> y @ mz.
  Proof.
    intros [Hv1 H1] [Hv2 H2]; split.
    - intros n [??]; destruct mz; split; auto.
    - intros n mz' [??] [??].
      specialize (H1 n (fst <$> mz')); specialize (H2 n (snd <$> mz')).
      destruct mz, mz'; split; naive_solver.
  Qed.

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  Lemma prod_updateP P1 P2 (Q : A * B  Prop) x :
    x.1 ~~>: P1  x.2 ~~>: P2  ( a b, P1 a  P2 b  Q (a,b))  x ~~>: Q.
  Proof.
    intros Hx1 Hx2 HP n mz [??]; simpl in *.
    destruct (Hx1 n (fst <$> mz)) as (a&?&?); first by destruct mz.
    destruct (Hx2 n (snd <$> mz)) as (b&?&?); first by destruct mz.
    exists (a,b); repeat split; destruct mz; auto.
  Qed.
  Lemma prod_updateP' P1 P2 x :
    x.1 ~~>: P1  x.2 ~~>: P2  x ~~>: λ y, P1 (y.1)  P2 (y.2).
  Proof. eauto using prod_updateP. Qed.
  Lemma prod_update x y : x.1 ~~> y.1  x.2 ~~> y.2  x ~~> y.
  Proof.
    rewrite !cmra_update_updateP.
    destruct x, y; eauto using prod_updateP with subst.
  Qed.
End prod.

(** * Option *)
Section option.
  Context {A : cmraT}.
  Implicit Types x y : A.

212 213 214
  Lemma option_local_update x y mmz :
    x ~l~> y @ mjoin mmz 
    Some x ~l~> Some y @ mmz.
215
  Proof.
216 217 218
    intros [Hv H]; split; first destruct mmz as [[?|]|]; auto.
    intros n mmz'. specialize (H n (mjoin mmz')).
    destruct mmz as [[]|], mmz' as [[]|]; inversion_clear 2; constructor; auto.
219 220 221 222 223 224 225 226 227 228 229 230 231 232
  Qed.

  Lemma option_updateP (P : A  Prop) (Q : option A  Prop) x :
    x ~~>: P  ( y, P y  Q (Some y))  Some x ~~>: Q.
  Proof.
    intros Hx Hy; apply cmra_total_updateP=> n [y|] ?.
    { destruct (Hx n (Some y)) as (y'&?&?); auto. exists (Some y'); auto. }
    destruct (Hx n None) as (y'&?&?); rewrite ?cmra_core_r; auto.
    by exists (Some y'); auto.
  Qed.
  Lemma option_updateP' (P : A  Prop) x :
    x ~~>: P  Some x ~~>: from_option P False.
  Proof. eauto using option_updateP. Qed.
  Lemma option_update x y : x ~~> y  Some x ~~> Some y.
233
  Proof. rewrite !cmra_update_updateP; eauto using option_updateP with subst. Qed.
234
End option.