ofe.v 37.1 KB
Newer Older
1
From iris.algebra Require Export base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2

3
(** This files defines (a shallow embedding of) the category of OFEs:
4 5 6 7 8 9 10 11
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
12 13
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
14
Instance: Params (@dist) 3.
15 16
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
17
Hint Extern 0 (_ {_} _) => reflexivity.
18
Hint Extern 0 (_ {_} _) => symmetry; assumption.
19 20 21

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
22
  | _ => progress simplify_eq/=
23 24 25 26
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
27
  repeat match goal with
28
  | _ => progress simplify_eq/=
29 30
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
31
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
32

33
Record OfeMixin A `{Equiv A, Dist A} := {
34
  mixin_equiv_dist x y : x  y   n, x {n} y;
35
  mixin_dist_equivalence n : Equivalence (dist n);
36
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39
}.

(** Bundeled version *)
40 41 42 43 44
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
45
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
46
}.
47 48 49 50 51 52 53 54 55
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
56 57

(** Lifting properties from the mixin *)
58 59
Section ofe_mixin.
  Context {A : ofeT}.
60
  Implicit Types x y : A.
61
  Lemma equiv_dist x y : x  y   n, x {n} y.
62
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
63
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
64
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
65
  Lemma dist_S n x y : x {S n} y  x {n} y.
66 67
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
68

Robbert Krebbers's avatar
Robbert Krebbers committed
69 70
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

71
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
72
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
73
   more sense. *)
74 75
Class Timeless `{Equiv A, Dist A} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_ _ _} _ {_} _ _.
76 77 78 79 80 81 82 83 84 85
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

86 87 88 89 90
Program Definition chain_map {A B : ofeT} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

91 92 93 94 95 96
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
97

Robbert Krebbers's avatar
Robbert Krebbers committed
98 99
(** General properties *)
Section cofe.
100
  Context {A : ofeT}.
101
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
102 103 104
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
105 106
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
107
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
  Qed.
109
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
112 113
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
114
  Qed.
115
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
116
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
117
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119 120
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  Proof. induction 2; eauto using dist_S. Qed.
123 124
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
125
  Instance ne_proper {B : ofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
128
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
129 130 131 132
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  Qed.
135

136
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
137 138 139 140
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
141 142
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
144
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
145 146
End cofe.

147
(** Contractive functions *)
148 149 150 151 152 153 154 155
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
156

157
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
158 159
Proof. by intros n y1 y2. Qed.

160 161 162 163 164
Section contractive.
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
165
  Proof. by apply (_ : Contractive f). Qed.
166
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
167
  Proof. intros. by apply (_ : Contractive f). Qed.
168 169 170 171 172 173 174

  Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

175 176 177 178 179 180 181 182 183 184 185 186 187 188
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
  | |- dist_later ?n ?x ?y => destruct n as [|n]; [done|change (x {n} y)]
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
189

Robbert Krebbers's avatar
Robbert Krebbers committed
190
(** Fixpoint *)
191
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
192
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
Next Obligation.
194
  intros A ? f ? n.
195
  induction n as [|n IH]=> -[|i] //= ?; try omega.
196 197
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
Qed.
199

200
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
201
  `{!Contractive f} : A := compl (fixpoint_chain f).
202
Definition fixpoint_aux : { x | x = @fixpoint_def }. by eexists. Qed.
203
Definition fixpoint {A AC AiH} f {Hf} := proj1_sig fixpoint_aux A AC AiH f Hf.
204
Definition fixpoint_eq : @fixpoint = @fixpoint_def := proj2_sig fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
205 206

Section fixpoint.
207
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
208

209
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
210
  Proof.
211 212
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
213
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  Qed.
215 216 217

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
218 219 220
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
221 222
  Qed.

223
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
224
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
225
  Proof.
226
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
227
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
228 229
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
  Qed.
231 232
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

  Lemma fixpoint_ind (P : A  Prop) :
    Proper (() ==> iff) P 
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
252 253
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
(** Mutual fixpoints *)
Section fixpoint2.
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
End fixpoint2.

Section fixpoint2_ne.
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
End fixpoint2_ne.

333
(** Function space *)
334
(* We make [ofe_fun] a definition so that we can register it as a canonical
335
structure. *)
336
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
337

338 339 340 341 342
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
343 344 345 346 347 348 349 350 351 352
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
353
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
354

355 356 357 358 359 360 361 362 363
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
364
Notation "A -c> B" :=
365 366
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
367 368
  Inhabited (A -c> B) := populate (λ _, inhabitant).

369
(** Non-expansive function space *)
370 371 372
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
  ofe_mor_ne n : Proper (dist n ==> dist n) ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
373 374
}.
Arguments CofeMor {_ _} _ {_}.
375 376
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
377

378 379 380 381
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

382 383 384 385 386 387 388
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
389 390
  Proof.
    split.
391
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
392
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
393
    - intros n; split.
394 395
      + by intros f x.
      + by intros f g ? x.
396
      + by intros f g h ?? x; trans (g x).
397
    - by intros n f g ? x; apply dist_S.
398
  Qed.
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
416

417 418
  Global Instance ofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@ofe_mor_car A B).
419
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
420 421 422
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
423
  Proof. done. Qed.
424
End ofe_mor.
425

426
Arguments ofe_morC : clear implicits.
427
Notation "A -n> B" :=
428 429
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
430
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
431

432
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
433 434
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
435
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
436
Instance: Params (@cconst) 2.
437

Robbert Krebbers's avatar
Robbert Krebbers committed
438 439 440 441 442
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
443
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
444
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
445

Ralf Jung's avatar
Ralf Jung committed
446
(* Function space maps *)
447
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
448
  (h : A -n> B) : A' -n> B' := g  h  f.
449 450
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
451
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
452

453 454 455 456
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
Instance ofe_morC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
457
Proof.
458
  intros f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
459
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
460 461
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
462
(** unit *)
463 464
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
465
  Definition unit_ofe_mixin : OfeMixin unit.
466
  Proof. by repeat split; try exists 0. Qed.
467
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
468

469 470
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
471 472

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
473
  Proof. done. Qed.
474
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
475 476

(** Product *)
477
Section product.
478
  Context {A B : ofeT}.
479 480 481 482 483 484

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
485
  Definition prod_ofe_mixin : OfeMixin (A * B).
486 487
  Proof.
    split.
488
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
489
      rewrite !equiv_dist; naive_solver.
490 491
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
492
  Qed.
493 494 495 496 497 498 499 500 501
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

502 503 504
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
505 506
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
507 508 509 510 511
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

512
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
513 514 515 516 517 518 519 520 521
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

522 523
(** Functors *)
Structure cFunctor := CFunctor {
524
  cFunctor_car : ofeT  ofeT  ofeT;
525 526
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
527 528
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
529
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
530 531 532 533 534
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
535
Existing Instance cFunctor_ne.
536 537
Instance: Params (@cFunctor_map) 5.

538 539 540
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

541 542 543
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

544
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
545 546
Coercion cFunctor_diag : cFunctor >-> Funclass.

547
Program Definition constCF (B : ofeT) : cFunctor :=
548 549 550
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

551
Instance constCF_contractive B : cFunctorContractive (constCF B).
552
Proof. rewrite /cFunctorContractive; apply _. Qed.
553 554 555 556 557

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.

558 559 560 561 562
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
563 564 565
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
566 567 568 569 570 571
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.

572 573 574 575 576 577 578 579
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

580
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') n :
581 582 583
  Proper (dist n ==> dist n) (compose f : (A -c> B)  A -c> B').
Proof. intros g g' Hf x; simpl. by rewrite (Hf x). Qed.

584
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
585
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
586 587
Instance ofe_funC_map_ne {A B B'} n :
  Proper (dist n ==> dist n) (@ofe_funC_map A B B').
588 589
Proof. intros f f' Hf g x. apply Hf. Qed.

590 591 592
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
593 594
|}.
Next Obligation.
595
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
596 597 598 599 600 601 602
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.

603 604
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
605 606
Proof.
  intros ?? A1 A2 B1 B2 n ???;
607
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
608 609
Qed.

610
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
611
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
612
  cFunctor_map A1 A2 B1 B2 fg :=
613
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
614
|}.
615 616
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
617
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
618
Qed.
Ralf Jung's avatar
Ralf Jung committed
619
Next Obligation.
620 621
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
622 623
Qed.
Next Obligation.
624 625
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
626 627
Qed.

628
Instance ofe_morCF_contractive F1 F2 :
629
  cFunctorContractive F1  cFunctorContractive F2 
630
  cFunctorContractive (ofe_morCF F1 F2).
631 632
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
633
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
634 635
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
636 637
(** Sum *)
Section sum.
638
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
639 640 641 642 643 644 645

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

646 647 648 649 650 651 652 653 654 655 656 657
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
658 659
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
660
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
661 662 663
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

664
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
665 666 667 668
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
669 670 671 672 673 674 675
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
676 677 678 679 680 681 682 683 684 685 686 687 688
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

689
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.

Instance sumCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (sumCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply sumC_map_ne; apply cFunctor_contractive.
Qed.

723 724 725
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
726

727
  Instance discrete_dist : Dist A := λ n x y, x  y.
728
  Definition discrete_ofe_mixin : OfeMixin A.
729 730
  Proof.
    split.
731 732 733
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
734
  Qed.
735

736 737 738 739 740
  Global Program Instance discrete_cofe : Cofe (OfeT A discrete_ofe_mixin) :=
    { compl c := c 0 }.
  Next Obligation.
    intros n c. rewrite /compl /=;
    symmetry; apply (chain_cauchy c 0 n). omega.
741 742 743
  Qed.
End discrete_cofe.

744 745
Notation discreteC A := (OfeT A discrete_ofe_mixin).
Notation leibnizC A := (OfeT A (@discrete_ofe_mixin _ equivL _)).
746 747 748 749 750 751

Instance discrete_discrete_cofe `{Equiv A, @Equivalence A ()} :
  Discrete (discreteC A).
Proof. by intros x y. Qed.
Instance leibnizC_leibniz A : LeibnizEquiv (leibnizC A).
Proof. by intros x y. Qed.
752

Robbert Krebbers's avatar
Robbert Krebbers committed
753
Canonical Structure boolC := leibnizC bool.
754 755 756 757
Canonical Structure natC := leibnizC nat.
Canonical Structure positiveC := leibnizC positive.
Canonical Structure NC := leibnizC N.
Canonical Structure ZC := leibnizC Z.
758

759 760
(* Option *)
Section option.
761
  Context {A : ofeT}.
762

763
  Instance option_dist : Dist (option A) := λ n, option_Forall2 (dist n).
764
  Lemma dist_option_Forall2 n mx my : mx {n} my  option_Forall2 (dist n) mx my.
765
  Proof. done. Qed.
766

767
  Definition option_ofe_mixin : OfeMixin (option A).
768 769 770 771 772
  Proof.
    split.
    - intros mx my; split; [by destruct 1; constructor; apply equiv_dist|].
      intros Hxy; destruct (Hxy 0); constructor; apply equiv_dist.
      by intros n; feed inversion (Hxy n).
773
    - apply _.
774 775
    - destruct 1; constructor; by apply dist_S.
  Qed.
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
  Canonical Structure optionC := OfeT (option A) option_ofe_mixin.

  Program Definition option_chain (c : chain optionC) (x : A) : chain A :=
    {| chain_car n := from_option id x (c n) |}.
  Next Obligation. intros c x n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
  Definition option_compl `{Cofe A} : Compl optionC := λ c,
    match c 0 with Some x => Some (compl (option_chain c x)) | None => None end.
  Global Program Instance option_cofe `{Cofe A} : Cofe optionC :=
    { compl := option_compl }.
  Next Obligation.
    intros ? n c; rewrite /compl /option_compl.
    feed inversion (chain_cauchy c 0 n); auto with lia; [].
    constructor. rewrite (conv_compl n (option_chain c _)) /=.
    destruct (c n); naive_solver.
  Qed.

792 793 794 795 796 797 798 799 800
  Global Instance option_discrete : Discrete A  Discrete optionC.
  Proof. destruct 2; constructor; by apply (timeless _). Qed.

  Global Instance Some_ne : Proper (dist n ==> dist n) (@Some A).
  Proof. by constructor. Qed.
  Global Instance is_Some_ne n : Proper (dist n ==> iff) (@is_Some A).
  Proof. destruct 1; split; eauto. Qed.
  Global Instance Some_dist_inj : Inj (dist n) (dist n) (@Some A).
  Proof. by inversion_clear 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
801 802 803
  Global Instance from_option_ne {B} (R : relation B) (f : A  B) n :
    Proper (dist n ==> R) f  Proper (R ==> dist n ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
804 805 806 807 808

  Global Instance None_timeless : Timeless (@None A).
  Proof. inversion_clear 1; constructor. Qed.
  Global Instance Some_timeless x : Timeless x  Timeless (Some x).
  Proof. by intros ?; inversion_clear 1; constructor; apply timeless. Qed.
809 810 811 812 813 814 815 816 817 818 819 820 821

  Lemma dist_None n mx : mx {n} None  mx = None.
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
  Lemma dist_Some_inv_l n mx my x :
    mx {n} my  mx = Some x   y, my = Some y  x {n} y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma dist_Some_inv_r n mx my y :
    mx {n} my  my = Some y   x</